Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs PDF full book. Access full book title Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs by Yasin Hajizadeh. Download full books in PDF and EPUB format.

Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs

Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs PDF Author: Yasin Hajizadeh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality.

Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs

Population-based Algorithms for Improved History Matching and Uncertainty Quantification of Petroleum Reservoirs PDF Author: Yasin Hajizadeh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality.

Novel Sampling Techniques for Reservoir History Matching Optimisation and Uncertainty Quantification in Flow Prediction

Novel Sampling Techniques for Reservoir History Matching Optimisation and Uncertainty Quantification in Flow Prediction PDF Author: Lina Mahgoub Yahya Mohamed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Modern reservoir management has an increasing focus on accurately predicting the likely range of field recoveries. A variety of assisted history matching techniques has been developed across the research community concerned with this topic. These techniques are based on obtaining multiple models that closely reproduce the historical flow behaviour of a reservoir. The set of resulted history matched models is then used to quantify uncertainty in predicting the future performance of the reservoir and providing economic evaluations for different field development strategies. The key step in this workflow is to employ algorithms that sample the parameter space in an efficient but appropriate manner. The algorithm choice has an impact on how fast a model is obtained and how well the model fits the production data. The sampling techniques that have been developed to date include, among others, gradient based methods, evolutionary algorithms, and ensemble Kalman filter (EnKF). This thesis has investigated and further developed the following sampling and inference techniques: Particle Swarm Optimisation (PSO), Hamiltonian Monte Carlo, and Population Markov Chain Monte Carlo. The inspected techniques have the capability of navigating the parameter space and producing history matched models that can be used to quantify the uncertainty in the forecasts in a faster and more reliable way. The analysis of these techniques, compared with Neighbourhood Algorithm (NA), has shown how the different techniques affect the predicted recovery from petroleum systems and the benefits of the developed methods over the NA. The history matching problem is multi-objective in nature, with the production data possibly consisting of multiple types, coming from different wells, and collected at different times. Multiple objectives can be constructed from these data and explicitly be optimised in the multi-objective scheme. The thesis has extended the PSO to handle multi-objective history matching problems in which a number of possible conflicting objectives must be satisfied simultaneously. The benefits and efficiency of innovative multi-objective particle swarm scheme (MOPSO) are demonstrated for synthetic reservoirs. It is demonstrated that the MOPSO procedure can provide a substantial improvement in finding a diverse set of good fitting models with a fewer number of very costly forward simulations runs than the standard single objective case, depending on how the objectives are constructed. The thesis has also shown how to tackle a large number of unknown parameters through the coupling of high performance global optimisation algorithms, such as PSO, with model reduction techniques such as kernel principal component analysis (PCA), for parameterising spatially correlated random fields. The results of the PSO-PCA coupling applied to a recent SPE benchmark history matching problem have demonstrated that the approach is indeed applicable for practical problems. A comparison of PSO with the EnKF data assimilation method has been carried out and has concluded that both methods have obtained comparable results on the example case. This point reinforces the need for using a range of assisted history matching algorithms for more confidence in predictions.

Intelligent Digital Oil and Gas Fields

Intelligent Digital Oil and Gas Fields PDF Author: Gustavo Carvajal
Publisher: Gulf Professional Publishing
ISBN: 012804747X
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations Includes techniques on change management and collaboration Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions

Dictionary of Mathematical Geosciences

Dictionary of Mathematical Geosciences PDF Author: Richard J. Howarth
Publisher: Springer
ISBN: 3319573152
Category : Science
Languages : en
Pages : 892

Book Description
This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.

Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization

Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization PDF Author: Reza Yousefzadeh
Publisher: Springer Nature
ISBN: 3031280792
Category : Technology & Engineering
Languages : en
Pages : 142

Book Description
This book explores methods for managing uncertainty in reservoir characterization and optimization. It covers the fundamentals, challenges, and solutions to tackle the challenges made by geological uncertainty. The first chapter discusses types and sources of uncertainty and the challenges in different phases of reservoir management, along with general methods to manage it. The second chapter focuses on geological uncertainty, explaining its impact on field development and methods to handle it using prior information, seismic and petrophysical data, and geological parametrization. The third chapter deals with reducing geological uncertainty through history matching and the various methods used, including closed-loop management, ensemble assimilation, and stochastic optimization. The fourth chapter presents dimensionality reduction methods to tackle high-dimensional geological realizations. The fifth chapter covers field development optimization using robust optimization, including solutions for its challenges such as high computational cost and risk attitudes. The final chapter introduces different types of proxy models in history matching and robust optimization, discussing their pros and cons, and applications. The book will be of interest to researchers and professors, geologists and professionals in oil and gas production and exploration.

Reservoir Characterization and History Matching with Uncertainty Quantification Using Ensemble-based Data Assimilation with Data Re-parameterization

Reservoir Characterization and History Matching with Uncertainty Quantification Using Ensemble-based Data Assimilation with Data Re-parameterization PDF Author: Mingliang Liu
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 153

Book Description
Reservoir characterization and history matching are essential steps in various subsurface applications, such as petroleum exploration and production and geological carbon sequestration, aiming to estimate the rock and fluid properties of the subsurface from geophysical measurements and borehole data. Mathematically, both tasks can be formulated as inverse problems, which attempt to find optimal earth models that are consistent with the true measurements. The objective of this dissertation is to develop a stochastic inversion method to improve the accuracy of predicted reservoir properties as well as quantification of the associated uncertainty by assimilating both the surface geophysical observations and the production data from borehole using Ensemble Smoother with Multiple Data Assimilation. To avoid the common phenomenon of ensemble collapse in which the model uncertainty would be underestimated, we propose to re-parameterize the high-dimensional geophysics data with data order reduction methods, for example, singular value decomposition and deep convolutional autoencoder, and then perform the models updating efficiently in the low-dimensional data space. We first apply the method to seismic and rock physics inversion for the joint estimation of elastic and petrophysical properties from the pre-stack seismic data. In the production or monitoring stage, we extend the proposed method to seismic history matching for the prediction of porosity and permeability models by integrating both the time-lapse seismic and production data. The proposed method is tested on synthetic examples and successfully applied in petroleum exploration and production and carbon dioxide sequestration.

Inverse Theory for Petroleum Reservoir Characterization and History Matching

Inverse Theory for Petroleum Reservoir Characterization and History Matching PDF Author: Dean S. Oliver
Publisher: Cambridge University Press
ISBN: 9780521881517
Category : Science
Languages : en
Pages : 394

Book Description
This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. It describes the theory and practice of estimating properties of underground petroleum reservoirs from measurements of flow in wells, and it explains how to characterize the uncertainty in such estimates. Early chapters present the reader with the necessary background in inverse theory, probability and spatial statistics. The book demonstrates how to calculate sensitivity coefficients and the linearized relationship between models and production data. It also shows how to develop iterative methods for generating estimates and conditional realizations. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology and can be used as a textbook for advanced courses on inverse theory in petroleum engineering. It includes many worked examples to demonstrate the methodologies and a selection of exercises.

Parallel Problem Solving from Nature - PPSN XII

Parallel Problem Solving from Nature - PPSN XII PDF Author: Carlos Coello Coello
Publisher: Springer
ISBN: 3642329640
Category : Computers
Languages : en
Pages : 551

Book Description
The two volume set LNCS 7491 and 7492 constitutes the refereed proceedings of the 12th International Conference on Parallel Problem Solving from Nature, PPSN 2012, held in Taormina, Sicily, Italy, in September 2012. The total of 105 revised full papers were carefully reviewed and selected from 226 submissions. The meeting began with 6 workshops which offered an ideal opportunity to explore specific topics in evolutionary computation, bio-inspired computing and metaheuristics. PPSN 2012 also included 8 tutorials. The papers are organized in topical sections on evolutionary computation; machine learning, classifier systems, image processing; experimental analysis, encoding, EDA, GP; multiobjective optimization; swarm intelligence, collective behavior, coevolution and robotics; memetic algorithms, hybridized techniques, meta and hyperheuristics; and applications.

Data Analytics in Reservoir Engineering

Data Analytics in Reservoir Engineering PDF Author: Sathish Sankaran
Publisher:
ISBN: 9781613998205
Category :
Languages : en
Pages : 108

Book Description
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.

Estimation of Distribution Algorithms for Reservoir History-matching Optimisation

Estimation of Distribution Algorithms for Reservoir History-matching Optimisation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description