Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions PDF full book. Access full book title Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions by Vijaykumar Sathyamurthi. Download full books in PDF and EPUB format.

Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions

Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions PDF Author: Vijaykumar Sathyamurthi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Subcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) and 25 microns (Type-B) in height. A third bare silicon wafer is used for control experiments. The test fluid is PF-5060, a fluoroinert with a boiling point of 56°C (Manufacturer: 3M Co.). The apparatus is of the constant heat flux type. Pool boiling experiments in nucleate and film boiling regimes are reported in this study. Experiments are carried out under low subcooling (5 °C and 10 °C) and high subcooling conditions (20°C to ~ 38°C). At approximately 38°C, a non-departing bubble configuration is obtained on a bare silicon wafer. Increase in subcooling is found to enhance the critical heat flux (CHF) and the CHF is found to shift towards higher wall superheats. Presence of MWCNT on the test surface led to an enhancement in heat flux. Potential factors responsible for boiling heat transfer enhancement on heater surfaces coated with MWCNT are identified as follows: a. Enhanced surface area or nano - fin effect b. Higher thermal conductivity of MWCNT than the substrate c. Disruption of vapor-liquid vapor interface in film boiling, and of the "microlayer" region in nucleate boiling d. Enhanced transient heat transfer caused by local quasi-periodic transient liquid-solid contacts due to presence of the "hair like" protrusion of the MWCNT e. Enhancement in the size of cold spots f. Pinning of contact line, leading to enhanced surface area underneath the bubble leading to enhanced heat transfer Presence of MWCNT is found to enhance the phase change heat transfer by approximately 400% in nucleate boiling for conditions of low subcooling. The heat transfer enhancement is found to be independent of the height of MWCNT in nucleate boiling regime in the low subcooling cases. About 75%-120% enhancement in heat transfer is observed for surfaces coated with MWCNT under conditions of high subcooling in the nucleate boiling regime. Surfaces coated with Type-B MWCNT show a 75% enhancement in heat transfer in the film boiling regime under conditions of low subcooling.

Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions

Pool Boiling Studies on Nanotextured Surfaces Under Highly Subcooled Conditions PDF Author: Vijaykumar Sathyamurthi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Subcooled pool boiling on nanotextured surfaces is explored in this study. The experiments are performed in an enclosed viewing chamber. Two silicon wafers are coated with Multiwalled Carbon Nanotubes (MWCNT), 9 microns (Type-A) and 25 microns (Type-B) in height. A third bare silicon wafer is used for control experiments. The test fluid is PF-5060, a fluoroinert with a boiling point of 56°C (Manufacturer: 3M Co.). The apparatus is of the constant heat flux type. Pool boiling experiments in nucleate and film boiling regimes are reported in this study. Experiments are carried out under low subcooling (5 °C and 10 °C) and high subcooling conditions (20°C to ~ 38°C). At approximately 38°C, a non-departing bubble configuration is obtained on a bare silicon wafer. Increase in subcooling is found to enhance the critical heat flux (CHF) and the CHF is found to shift towards higher wall superheats. Presence of MWCNT on the test surface led to an enhancement in heat flux. Potential factors responsible for boiling heat transfer enhancement on heater surfaces coated with MWCNT are identified as follows: a. Enhanced surface area or nano - fin effect b. Higher thermal conductivity of MWCNT than the substrate c. Disruption of vapor-liquid vapor interface in film boiling, and of the "microlayer" region in nucleate boiling d. Enhanced transient heat transfer caused by local quasi-periodic transient liquid-solid contacts due to presence of the "hair like" protrusion of the MWCNT e. Enhancement in the size of cold spots f. Pinning of contact line, leading to enhanced surface area underneath the bubble leading to enhanced heat transfer Presence of MWCNT is found to enhance the phase change heat transfer by approximately 400% in nucleate boiling for conditions of low subcooling. The heat transfer enhancement is found to be independent of the height of MWCNT in nucleate boiling regime in the low subcooling cases. About 75%-120% enhancement in heat transfer is observed for surfaces coated with MWCNT under conditions of high subcooling in the nucleate boiling regime. Surfaces coated with Type-B MWCNT show a 75% enhancement in heat transfer in the film boiling regime under conditions of low subcooling.

Pool Boiling on Nano-finned Surfaces

Pool Boiling on Nano-finned Surfaces PDF Author: Sharan Ram Sriraman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling experiments are conducted for saturation and subcooled conditions. Three different types of ordered nano-structured surfaces are fabricated using Step and flash imprint lithography on silicon substrates followed by Reactive Ion Etching (RIE) or Deep Reactive Ion Etching (DRIE). These nano-structures consist of a square array of cylindrical nanofins with a longitudinal pitch of 1 mm, transverse pitch of 0.9 mm and fixed (uniform) heights ranging from 15 nm - 650 nm for each substrate. The contact angle of de-ionized water on the substrates is measured before and after the boiling experiments. The contact-angle is observed to increase with the height of the nano-fins. Contact angle variation is also observed before and after the pool boiling experiments. The pool boiling curves for the nano-structured silicon surfaces are compared with that of atomically smooth single-crystal silicon (bare) surfaces. Data processing is performed to estimate the heat flux through the projected area (plan area) for the nano-patterned zone as well as the heat flux through the total nano-patterned area, which includes the surface area of the fins. Maximum heat flux (MHF) is enhanced by ~120 % for the nanofin surfaces compared to bare (smooth) surfaces, under saturation condition. The pool boiling heat flux data for the three nano-structured surfaces progressively overlap with each other in the vicinity of the MHF condition. Based on the experimental data several micro/nano-scale transport mechanisms responsible for heat flux enhancements are identified, which include: "microlayer" disruption or enhancement, enhancement of active nucleation site density, enlargement of cold spots and enhancement of contact angle which affects the vapor bubble departure frequency.

AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF SURFACE CONDITIONS ON POOL-BOILING HEAT TRANSFER FOR VARIOUS MATERIALS.

AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF SURFACE CONDITIONS ON POOL-BOILING HEAT TRANSFER FOR VARIOUS MATERIALS. PDF Author: Shikha Ebrahim
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this research, minimum film boiling temperature (Tmin) is quantitatively determined as a function of the initial substrate temperature, liquid subcooling, surface thermophysical properties and surface conditions. Since Tmin defines the boundary between the film and transition boiling regimes, its value is significant for the design of an emergency core cooling system following a hypothetical loss-of-coolant accident (LOCA) in a nuclear power plant. When a sufficiently heated surface is plunged in a water pool, a vapor blanket is generated around the test section acting as a heat transfer insulator due to the poor thermal conductivity of the vapor. At temperatures lower than Tmin, the heat transfer is dramatically enhanced owing the collapse of the vapor film allowing direct physical contact between the water and the heated surface. Therefore, it is very important to explore methods and techniques that increase this temperature in order to improve the safety of nuclear reactors. A test facility was designed and constructed to conduct quenching experiments using vertical rods. Seven cylindrical test samples were fabricated with embedded thermocouples inside the cladding material. The thermocouples were connected to a data acquisition system in order to measure the temperature history during the experiments. The temperature and heat flux at the surface were calculated using an inverse heat conduction code along with an advance image processing technique to quantitatively characterize the liquid-vapor interfacial waves, vapor layer thickness, Tmin, quenching temperature, quenching time, and quench front velocity in the film boiling heat transfer regime. Visualization of the boiling behavior was captured by a high-speed camera at a frame rate of 750 frames per second (fps). The thermocouple data and the captured videos were synchronized to couple the behavior of the vapor layer with the thermal behavior of the heated sample. Various characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) associated with Energy-dispersive X-ray spectroscopy (EDS), and field emission scanning electron were employed to identify the phases, chemical composition, and surface microstructure of the Inconel-600 before and after being used in a 7 x 7 rod bundle facility. Micro- and nanoparticles composed of nickel, chromium, and iron oxides were observed at the surface of the oxidized Inconel samples. It was found that the porous microstructure coupled with the increase in liquid spreading played a significant role in the enhancement of the film boiling heat transfer. Finally, the heat transfer behavior in the film boiling regime was investigated by calculating the heat transfer coefficient and Nusselt number for various cases. The novelty of this research is the coupling between the results of the quenching experiments and the surface characterization analyses that prompted the development of a new correlation for Tmin. This correlation adequately captures the effects of liquid subcooling, porosity of the oxide layer, and system pressure.

Ìtan Ìnú Ìwé Mimó. [With illustrations.].

Ìtan Ìnú Ìwé Mimó. [With illustrations.]. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors

Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors PDF Author: Vijaykumar Sathyamurthi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The objective of this investigation is to measure and analyze surface temperature fluctuations in pool boiling. The surface temperature fluctuations were recorded on silicon surfaces with and without multi-walled carbon nanotubes (MWCNT). Novel Thin Film Thermocouples (TFT) are micro-fabricated on test substrates to measure surface temperatures. A dielectric liquid refrigerant (PF-5060) is used as test fluid. Both nucleate and lm boiling regimes are investigated for the silicon test substrates. Dynamics of nucleate boiling is investigated on the CNT coated substrates. High frequency temperature fluctuation data is analyzed for the presence of determinism using non-linear time series analysis techniques in TISEAN© software. The impact of subcooling and micro/nano-scale surface texturing using MWCNT coatings on the dynamics of pool boiling is assessed. Dynamic invariants such as correlation dimensions and Lyapunov spectrum are evaluated for the reconstructed attractor. A non-linear noise reduction scheme is employed to reduce the level of noise in the data. Previous investigations in pool boiling chaos, reported in literature were based on temperature measurements underneath the test surface consisting of single or few active nucleation sites. Previous studies have indicated the presence of low-dimensional behavior in nucleate boiling and high-dimensional behavior in CHF and film boiling. Currently, there is no study detailing the effects of multiple nucleation sites, subcooling and surface texturing on pool boiling dynamics. The investigation comprises of four parts: i) in situ micro-machining of Chromelalumel (K-type) TFT, ii) calibration of these sensors, iii) utilizing these sensors in pool boiling experiments iv) analysis of these fluctuations using techniques of nonlinear time series analysis. Ten TFT are fabricated on a rectangular silicon surface within an area of ~ 3.00 cm x 3.00 cm. The sensing junctions of the TFT measure 50 mm in width and 250 nm in depth. Surface temperature fluctuations of the order of i) 0.65-0.93° C are observed near ONB ii) 2.3-6.5° C in FDNB iii) 2.60-5.00° C at CHF and iv) 2.3-3.5° C in film boiling. Investigations show the possible presence of chaotic dynamics near CHF and in film-boiling in saturated and subcooled pool boiling. Fully-developed nucleate boiling (FDNB) is chaotic. No clear assessment of the dynamics could be made in the onset of nucleate boiling (ONB) and partial nucleate boiling (PNB) regimes due to the effects of noise. However, the frequency spectra in these regimes appear to have two independent frequencies and their integral combinations indicating a possible quasiperiodic bifurcation route to chaos. The dimensionality in FDNB, at CHF and in film-boiling is lower in saturated pool boiling as compared to values in corresponding regimes in subcooled pool boiling. Surface temperature fluctuations can damage electronic components and need to be carefully controlled. Understanding the nature of these fluctuations will aid in deciding the modeling approach for surface temperature transients on an electronic chip. Subsequently, the TFT signals can be employed in a suitable feedback control loop to prevent the occurrence of hotspots.

Pool Boiling Heat Transfer from Porous-coated Surfaces in FC-72, the Effects of Subcooling and Non-boiling Immersion Time

Pool Boiling Heat Transfer from Porous-coated Surfaces in FC-72, the Effects of Subcooling and Non-boiling Immersion Time PDF Author: Kuiyan Xu
Publisher:
ISBN:
Category : Ebullition
Languages : en
Pages : 188

Book Description


High-pressure Pool Boiling and Physical Insight of Engineered Surfaces

High-pressure Pool Boiling and Physical Insight of Engineered Surfaces PDF Author: Nanxi Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Boiling is a very effective way of heat transfer due to the latent heat of vaporization. Large amount of heat can be removed as bubbles form and leave the heated surface. Boiling heat transfer has lots of applications both in our daily lives and in the industry. The performance of boiling can be described with two important parameters, i.e. the heat transfer coefficient (HTC) and the critical heat flux (CHF). Enhancing the performance of boiling will greatly increase the efficiency of thermal systems, decrease the size of heat exchangers, and improve the safety of thermal facilities. Boiling heat transfer is an extremely complex process. After over a century of research, the mechanism for the HTC and CHF enhancement is still elusive. Previous research has demonstrated that fluid properties, system pressures, surface properties, and heater properties etc. have huge impact on the performance of boiling. Numerous methods, both active and passive, have been developed to enhance boiling heat transfer. In this work, the effect of pressure was investigated on a plain copper substrate from atmospheric pressure to 45 psig. Boiling heat transfer performance enhancement was then investigated on Teflon© coated copper surfaces, and graphene oxide coated copper surfaces under various system pressures. It was found that both HTC and CHF increases with the system pressure on all three types of surfaces. Enhancement of HTC on the Teflon© coated copper surface is contributed by the decrease in wettability. It is also hypothesized that the enhancement in both HTC and CHF on the graphene oxide coated surface is due to pinning from micro and nanostructures in the graphene oxide coating or non-homogeneous wettability. Condensation and freezing experiments were conducted on engineered surfaces in order to further characterize the pinning effect of non-homogeneous wettability and micro/nano structure of the surface.

Master's Theses Directories

Master's Theses Directories PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 312

Book Description
"Education, arts and social sciences, natural and technical sciences in the United States and Canada".

Hydrodynamic Aspects of Boiling Heat Transfer

Hydrodynamic Aspects of Boiling Heat Transfer PDF Author: N. Zuber
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 216

Book Description


Subcooled Pool Boiling Heat Transfer Using R113 on Flat Surface

Subcooled Pool Boiling Heat Transfer Using R113 on Flat Surface PDF Author: Kamleshkumar J. Suthar
Publisher:
ISBN:
Category : Fluids
Languages : en
Pages : 186

Book Description