Author: D. J. Jones
Publisher: The Electrochemical Society
ISBN: 1607688603
Category : Science
Languages : en
Pages : 745
Book Description
Polymer Electrolyte Fuel Cells and Electrolyzers 18 (PEFC&E 18)
Author: D. J. Jones
Publisher: The Electrochemical Society
ISBN: 1607688603
Category : Science
Languages : en
Pages : 745
Book Description
Publisher: The Electrochemical Society
ISBN: 1607688603
Category : Science
Languages : en
Pages : 745
Book Description
High temperature polymer electrolyte membrane fuel cells
Author: Christian Siegel
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832539174
Category : Science
Languages : en
Pages : 182
Book Description
A three-dimensional computational fluid dynamics model of a high temperature polymer electrolyte membrane fuel cell, employing a high temperature stable polybenzimidazole membrane electrode assembly doped with phosphoric acid, was developed and implemented using a commercially available finite element software. Three types of flow-fields were modeled and simulated. Selected simulation results at reference operating conditions were compared to the performance curves and to segmented solid-phase temperature and current density measurements. For the segmented measurements, an inhouse developed prototype cell was designed and manufactured. The segmented cell was successfully operated and the solid-phase temperature and the current density distribution were recorded, evaluated, and discussed. Sequentially scanned segmented electrochemical impedance spectroscopy measurements were performed to qualitatively support the observed trends. These measurements were used to identify and determine the causes of the inhomogeneous current density distributions. An equivalent circuit model was developed, the obtained spectra were analyzed, and the model parameters discussed. This work helps to provide a better understanding of the internal behaviour of a running high temperature polymer electrolyte membrane fuel cell and presents valuable data for modeling and simulation. For large fuel cells and complete fuel cell stacks in particular, well designed anode and cathode inlet and outlet sections are expected to aid in achieving flatter quantities distributions and in preventing hot spots over the membrane electrode assembly area, and to develop proper start-up, shut-down, and tempering concepts.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832539174
Category : Science
Languages : en
Pages : 182
Book Description
A three-dimensional computational fluid dynamics model of a high temperature polymer electrolyte membrane fuel cell, employing a high temperature stable polybenzimidazole membrane electrode assembly doped with phosphoric acid, was developed and implemented using a commercially available finite element software. Three types of flow-fields were modeled and simulated. Selected simulation results at reference operating conditions were compared to the performance curves and to segmented solid-phase temperature and current density measurements. For the segmented measurements, an inhouse developed prototype cell was designed and manufactured. The segmented cell was successfully operated and the solid-phase temperature and the current density distribution were recorded, evaluated, and discussed. Sequentially scanned segmented electrochemical impedance spectroscopy measurements were performed to qualitatively support the observed trends. These measurements were used to identify and determine the causes of the inhomogeneous current density distributions. An equivalent circuit model was developed, the obtained spectra were analyzed, and the model parameters discussed. This work helps to provide a better understanding of the internal behaviour of a running high temperature polymer electrolyte membrane fuel cell and presents valuable data for modeling and simulation. For large fuel cells and complete fuel cell stacks in particular, well designed anode and cathode inlet and outlet sections are expected to aid in achieving flatter quantities distributions and in preventing hot spots over the membrane electrode assembly area, and to develop proper start-up, shut-down, and tempering concepts.
PEM Electrolysis for Hydrogen Production
Author: Dmitri Bessarabov
Publisher: CRC Press
ISBN: 1482252325
Category : Science
Languages : en
Pages : 396
Book Description
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevan
Publisher: CRC Press
ISBN: 1482252325
Category : Science
Languages : en
Pages : 396
Book Description
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevan
Polymer Electrolyte Fuel Cell Degradation
Author: Matthew M. Mench
Publisher: Academic Press
ISBN: 0123869366
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.
Publisher: Academic Press
ISBN: 0123869366
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.
Polymer Electrolyte Fuel Cells
Author: Alejandro A. Franco
Publisher: CRC Press
ISBN: 9814364401
Category : Science
Languages : en
Pages : 608
Book Description
This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related
Publisher: CRC Press
ISBN: 9814364401
Category : Science
Languages : en
Pages : 608
Book Description
This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related
Polymer Electrolyte Fuel Cells 17 (PEFC 17)
Author: D. J. Jones
Publisher: The Electrochemical Society
ISBN: 1607688255
Category : Fuel cells
Languages : en
Pages : 1165
Book Description
Publisher: The Electrochemical Society
ISBN: 1607688255
Category : Fuel cells
Languages : en
Pages : 1165
Book Description
High Temperature Polymer Electrolyte Membrane Fuel Cells
Author: Qingfeng Li
Publisher: Springer
ISBN: 3319170821
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
Publisher: Springer
ISBN: 3319170821
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
Polymer Electrolyte Fuel Cells 14 (PEFC 14)
Author: H. Gasteiger
Publisher: The Electrochemical Society
ISBN: 1607685396
Category : Fuel cells
Languages : en
Pages : 1269
Book Description
Publisher: The Electrochemical Society
ISBN: 1607685396
Category : Fuel cells
Languages : en
Pages : 1269
Book Description
Polymer Electrolyte Fuel Cell Durability
Author: Felix N. Büchi
Publisher: Springer Science & Business Media
ISBN: 038785536X
Category : Science
Languages : en
Pages : 489
Book Description
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
Publisher: Springer Science & Business Media
ISBN: 038785536X
Category : Science
Languages : en
Pages : 489
Book Description
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
Polymer Electrolyte Fuel Cells
Author: Michael Eikerling
Publisher: CRC Press
ISBN: 1439854068
Category : Science
Languages : en
Pages : 567
Book Description
The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op
Publisher: CRC Press
ISBN: 1439854068
Category : Science
Languages : en
Pages : 567
Book Description
The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op