An Introduction to Composite Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to Composite Materials PDF full book. Access full book title An Introduction to Composite Materials by D. Hull. Download full books in PDF and EPUB format.

An Introduction to Composite Materials

An Introduction to Composite Materials PDF Author: D. Hull
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

An Introduction to Composite Materials

An Introduction to Composite Materials PDF Author: D. Hull
Publisher: Cambridge University Press
ISBN: 1107393183
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

Point Defects in Metals I

Point Defects in Metals I PDF Author: G. Leibfried
Publisher: Springer
ISBN: 3540372016
Category : Science
Languages : en
Pages : 356

Book Description


Atomic Defects in Metals / Atomare Fehlstellen in Metallen

Atomic Defects in Metals / Atomare Fehlstellen in Metallen PDF Author: H. Ullmaier
Publisher: Springer
ISBN: 9783540514350
Category : Science
Languages : en
Pages : 0

Book Description
Atomic or point defects are disturbances of the periodicity of the crystal lattice extending over only a few atomic distances. Many physical and mechanical properties of solids are sensitive to their presence. Furthermore other defects which are crucial to material behaviour are influenced by their interaction with atomic defects. A detailed knowledge of production mechanisms and properties of point defects is therefore essential for assessing and for understanding the atomistic as well as the macroscopic behaviour of materials. As a result of the use of new research methods in recent years, such information is now available for almost all pure metals, for many dilute alloys and for some concentrated alloys. However, a critical and comprehensive collection of these data has so far been missing. The aim of the present volume is to close this gap by sifting, evaluating and compiling data on vacancies and self-interstitial atoms in solid metals. A chapter on the element helium is included because of the exeptional position of He as an "alloying" element and its role in radiation damage phenomena.

Handbook of Materials Structures, Properties, Processing and Performance

Handbook of Materials Structures, Properties, Processing and Performance PDF Author: Lawrence E. Murr
Publisher: Springer
ISBN: 9783319019055
Category : Technology & Engineering
Languages : en
Pages : 1500

Book Description
This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.

Crystallography and Crystal Defects

Crystallography and Crystal Defects PDF Author: Anthony Kelly
Publisher: John Wiley & Sons
ISBN: 9780471720447
Category : Science
Languages : en
Pages : 492

Book Description
Crystallography and Crystal Defects Revised Edition A. Kelly, Churchill College, Cambridge, UK G. W. Groves, Exeter College, Oxford, UK and P. Kidd, Queen Mary and Westfield College, University of London, UK The concepts of crystallography are introduced here in such a way that the physical properties of crystals, including their mechanical behaviour, can be better understood and quantified. A unique approach to the treatment of crystals and their defects is taken in that the often separate disciplines of crystallography, tensor analysis, elasticity and dislocation theory are combined in such a way as to equip materials scientists with knowledge of all the basic principles required to interpret data from their experiments. This is a revised and updated version of the widely acclaimed book by Kelly and Groves that was first published nearly thirty years ago. The material remains timely and relevant and the first edition still holds an unrivalled position at the core of the teaching of crystallography and crystal defects today. Undergraduate readers will acquire a rigorous grounding, from first principles, in the crystal classes and the concept of a lattice and its defects and their descriptions using vectors. Researchers will find here all the theorems of crystal structure upon which to base their work and the equations necessary for calculating interplanar spacings, transformation of indices and manipulations involving the stereographic projection and transformations of tensors and matrices.

Application of Particle and Laser Beams in Materials Technology

Application of Particle and Laser Beams in Materials Technology PDF Author: P. Misaelides
Publisher: Springer Science & Business Media
ISBN: 9780792333241
Category : Science
Languages : en
Pages : 702

Book Description
The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and superhard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their quality. Application of Particle and Laser Beams in Materials Technology provides an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale are presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection. The book is divided into six thematic units: Fundamentals, Surface Analysis Techniques, Laser Beams in Materials Technology, Accelerator-Based Techniques in Materials Technology, Materials Modification and Synchrotron Radiation.

Defects in Solids

Defects in Solids PDF Author: Richard J. D. Tilley
Publisher: John Wiley & Sons
ISBN: 047038073X
Category : Science
Languages : en
Pages : 549

Book Description
Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.

Elements of Structures and Defects of Crystalline Materials

Elements of Structures and Defects of Crystalline Materials PDF Author: Tsang-Tse Fang
Publisher: Elsevier
ISBN: 0128142693
Category : Technology & Engineering
Languages : en
Pages : 233

Book Description
Elements of Structures and Defects of Crystalline Materials has been written to cover not only the fundamental principles behind structures and defects, but also to provide deep insights into understanding the relationships of properties, defect chemistry and processing of the concerned materials. Part One deals with structures, while Part Two covers defects. Since the knowledge of the electron configuration of elements is necessary for understanding the nature of chemical bonding, it is discussed in the opening chapter. Chapter Two then describes the bonding formation within the crystal structures of varied materials, with Chapter Three delving into how a material's structure is formed. In view of the importance of the effects of the structure distortion on the material properties due to the fields, the related topics have been included in section 3.4. Moreover, several materials still under intensive investigation have been illustrated to provide deep insights into understanding the effects of the relationships of processing, structures and defects on the material properties. The defects of materials are explored in Part II. Chapter 4 deals with the point defects of metal and ceramics. Chapter 5 covers the fundamentals of the characteristics of dislocations, wherein physics and the atomic mechanics of several issues have been described in detail. In view of the significant influence of the morphologies including size, shape and distribution of grains, phases on the microstructure evolution, and, in turn, the properties of materials, the final chapter focuses on the fundamentals of interface energies, including single phase (grain) boundary and interphase boundary. - Discusses the relationship between properties, defect chemistry and the processing of materials - Presents coverage of the fundamental principles behind structures and defects - Includes information on two-dimensional and three-dimensional imperfections in solids

Ceramic Materials

Ceramic Materials PDF Author: C. Barry Carter
Publisher: Springer Science & Business Media
ISBN: 1461435234
Category : Technology & Engineering
Languages : en
Pages : 775

Book Description
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.

Structure-Property Relations in Nonferrous Metals

Structure-Property Relations in Nonferrous Metals PDF Author: Alan Russell
Publisher: John Wiley & Sons
ISBN: 0471708534
Category : Technology & Engineering
Languages : en
Pages : 440

Book Description
This junior/senior textbook presents fundamental concepts ofstructure property relations and a description of how theseconcpets apply to every metallic element except iron. Part One of the book describes general concepts of crystalstructure, microstructure and related factors on the mechanical,thermal, magnetic and electronic properties of nonferrous metals,intermetallic compounds and metal matrix composites. Part Two discusses all the nonferrous metallic elements from twoperspectives: First it explains how the concepts presented in PartOne define the properties of a particular metallic element and itsalloys. Second is a description of the major engineering uses ofeach metal. This section features sidebar pieces describingparticular physical property oddities, engineering applications andcase studies. An Instructor's Manual presenting detailed solutionsto all the problems in the book is available from the Wileyeditorial department. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.