Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures PDF full book. Access full book title Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures by Shuoyuan Chen. Download full books in PDF and EPUB format.

Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures

Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures PDF Author: Shuoyuan Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Localized surface plasmon resonance (LSPR) in semiconductor nanostructures have attracted intense attention recently for its broad application in bio-imaging, chemical sensing, photocatalysis, and photovoltaics. Compared to the LSPR in metallic nanocrystals (NCs), LSPR in semiconductor NCs is highly tunable in the infrared region by tailoring chemical composition and stoichiometry. Moreover, LSPR along with external magnetic field allows the exploration of magneto-plasmonic coupling in single-phase semiconductors, opening up the magneto-optical ways to control charge carriers. In this thesis, we focus on the LSPR as well as magneto-optical properties of indium nitride (InN), providing valuable insights into the insufficiently researched III-V group semiconductors. Wurtzite phase InN NCs were successfully synthesized using the low-temperature colloidal method, and the plasmon intensity is tunable by changing the synthesis environment and varying doping concentrations of aluminum and titanium ions. Due to the combined effects of conduction band non-parabolicity and intraband transition, our InN NCs with different plasmon intensities have an almost fixed plasmonic energy of 0.37 eV. Besides, the optical bandgap of pure InN NCs ranges from 1.5 to 1.75 eV, depending on the reaction conditions, while that of the Al and Ti-doped InN varies from 1.65 to 1.85 eV. The plasmon-dependent phonon change is evaluated by the Raman spectroscopy. Differences in the longitudinal-optical (LO) phonon mode was observed for InN with high and low plasmon intensity. The magneto-optical properties of InN NCs were measured by the magnetic circular dichroism (MCD). The field-dependence and temperature-independence of the measured MCD spectra were investigated, and the plasmon-induced polarization of carriers was demonstrated. Tuning of the carrier polarization by varying LSPR and external magnetic field corroborates the hypothesis of non-resonant coupling between plasmons and excitons in a single-phase semiconductor. The results of this work demonstrate that LSPR can act as a degree of freedom in manipulating electrons in technologically-important III-V nanostructures and lead to potential applications in photonics and quantum computing at room temperature. Finally, InN nanowires (NWs) with LSPR were fabricated via low-temperature chemical vapor deposition (CVD) approach, laying the groundwork for the future research of LSPR and magneto-plasmonics in a one-dimensional system.

Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures

Plasmonic and Magneto-Optical Properties of Nonstoichiometric Indium Nitride Nanostructures PDF Author: Shuoyuan Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Localized surface plasmon resonance (LSPR) in semiconductor nanostructures have attracted intense attention recently for its broad application in bio-imaging, chemical sensing, photocatalysis, and photovoltaics. Compared to the LSPR in metallic nanocrystals (NCs), LSPR in semiconductor NCs is highly tunable in the infrared region by tailoring chemical composition and stoichiometry. Moreover, LSPR along with external magnetic field allows the exploration of magneto-plasmonic coupling in single-phase semiconductors, opening up the magneto-optical ways to control charge carriers. In this thesis, we focus on the LSPR as well as magneto-optical properties of indium nitride (InN), providing valuable insights into the insufficiently researched III-V group semiconductors. Wurtzite phase InN NCs were successfully synthesized using the low-temperature colloidal method, and the plasmon intensity is tunable by changing the synthesis environment and varying doping concentrations of aluminum and titanium ions. Due to the combined effects of conduction band non-parabolicity and intraband transition, our InN NCs with different plasmon intensities have an almost fixed plasmonic energy of 0.37 eV. Besides, the optical bandgap of pure InN NCs ranges from 1.5 to 1.75 eV, depending on the reaction conditions, while that of the Al and Ti-doped InN varies from 1.65 to 1.85 eV. The plasmon-dependent phonon change is evaluated by the Raman spectroscopy. Differences in the longitudinal-optical (LO) phonon mode was observed for InN with high and low plasmon intensity. The magneto-optical properties of InN NCs were measured by the magnetic circular dichroism (MCD). The field-dependence and temperature-independence of the measured MCD spectra were investigated, and the plasmon-induced polarization of carriers was demonstrated. Tuning of the carrier polarization by varying LSPR and external magnetic field corroborates the hypothesis of non-resonant coupling between plasmons and excitons in a single-phase semiconductor. The results of this work demonstrate that LSPR can act as a degree of freedom in manipulating electrons in technologically-important III-V nanostructures and lead to potential applications in photonics and quantum computing at room temperature. Finally, InN nanowires (NWs) with LSPR were fabricated via low-temperature chemical vapor deposition (CVD) approach, laying the groundwork for the future research of LSPR and magneto-plasmonics in a one-dimensional system.

Study of Plasmonic and Magneto-optical Properties of Transition Metal Doped Indium Oxide Nanocrystals

Study of Plasmonic and Magneto-optical Properties of Transition Metal Doped Indium Oxide Nanocrystals PDF Author: Yi Tan
Publisher:
ISBN:
Category : Doped semiconductors
Languages : en
Pages : 78

Book Description
Plasmonic nanostructure materials have been widely investigated recently because of their considerable potential for applications in biological and chemical sensors, nano-optical devices and photothermal therapy. Compared to metal nanocrystals (NCs), doped semiconductor NCs with tunable localized surface plasmon resonance (LSPR) from near-infrared (NIR) mid-infrared (MIR) region bring more opportunities to the applications of plasmonics. Magnetoplasmonic nanostructures which could be utilized in multifunctional devices also have attracted attention due to the combination of plasmonic and magnetic properties and the manipulation of light with external magnetic fields. In this research, indium oxide (In2O3) as a typical n-type semiconductor with high mobility and carrier concentration is selected as the host lattice for doping, and molybdenum (Mo) and tungsten (W) which are transition metal elements from the same group as dopants. Colloidal molybdenum-doped indium oxide (IMO) NCs and tungsten-doped indium oxide (IWO) NCs with varying doping concentrations have been successfully synthesized, and their plasmonic and magneto-optical properties have been explored. Similarities and differences between IMO NCs and IWO NCs were discussed. Both IMO and IWO NCs have shown good tunability of plasmon resonance in the MIR range approximately from 0.22 eV to 0.34 eV. 9.2 % IMO NCs show the strongest LSPR at 0.34 eV and the maximum free electron concentration of 1.1x1020 cm-3, and 1.5 % IWO NCs exhibit the strongest LSPR at 0.33 eV with the free electron concentration of 0.94x1020 cm-3. The magneto-optical properties were studied by magnetic circular dichroism (MCD) spectroscopy. The variable-temperature-variable-field MCD spectra that coincide with the band gap absorption, indicate the excitonic splitting in the NCs. A robust MCD intensity at room temperature suggests intrinsic plasmon-exciton coupling and carrier polarization induced by plasmon, which might be phonon-mediated. A decrease in MCD signal with temperature and the saturation-like field dependence of MCD intensity for IMO and IWO NCs may related to the different oxidation states of the dopant ions since the reduced 5+ oxidation states can exhibit the Curie-type paramagnetism. IMO and IWO NCs show the coupling between exciton and plasmon in a single-phase which opens a possibility for their application in electronics and photonics. Moreover, magnetoplasmonic modes provide a new degree of freedom for controlling carrier polarization at room temperature in practical photonic, optoelectronic and quantum-information processing devices.

Magneto-optical Properties of Ferromagnetic Nanostructures on Modified Nanosphere Templates

Magneto-optical Properties of Ferromagnetic Nanostructures on Modified Nanosphere Templates PDF Author: Xiaoyu Zou
Publisher:
ISBN: 9781321834161
Category : Ferromagnetic materials
Languages : en
Pages : 75

Book Description
Abstract: Ferromagnetic nanostructures have a characteristic size at the critical length scale for magnetic domains, optical propagation and plasmonic resonance. For applications such as biosensing, ferromagnetic nanostructures need to be fabricated at the wafer scale. Nanosphere lithography is a candidate for wafer scale fabrication of ferromagnetic nanostructures. Two types of nanosphere lithography are investigated: drop casting and spin coating. Drop casting is used for producing model systems, while spin coating can be used for wafer scale production. The magneto-optical properties of nanostructures produced by each method were studied using the magneto-optical Kerr effect (MOKE). In drop casted samples, the coercivity increased compared to flat thin films. In spin coated samples, Kerr rotation reversal and anomalous peaks occurred. A two-phase model was used to simulate the MOKE data of spin coated samples. The simulation reproduced qualitative features of MOKE hysteresis loops, but not certain details, implying there are more than two phases or interactions between the phases.

Magneto-optical Properties of II-VI Semiconductor Colloidal Nanostructures

Magneto-optical Properties of II-VI Semiconductor Colloidal Nanostructures PDF Author: Feng Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Optical Properties of Nanostructured Metallic Systems

Optical Properties of Nanostructured Metallic Systems PDF Author: Sergio G. Rodrigo
Publisher: Springer
ISBN: 9783642230868
Category : Technology & Engineering
Languages : en
Pages : 163

Book Description
The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.

Optical Properties of Plasmonic Nanostructures

Optical Properties of Plasmonic Nanostructures PDF Author: Bala Krishna Juluri
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Book Description


Studies of the Optical Properties of Plasmonic Nanostructures

Studies of the Optical Properties of Plasmonic Nanostructures PDF Author: Yu-Ju Hung
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Magneto-Optical Effects in Hybrid Plasmonic Nanostructures

Magneto-Optical Effects in Hybrid Plasmonic Nanostructures PDF Author: Lars Klompmaker
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Plasmonics: Metallic Nanostructures and Their Optical Properties XIII

Plasmonics: Metallic Nanostructures and Their Optical Properties XIII PDF Author: Allan D. Boardman
Publisher:
ISBN: 9781628417135
Category : Nanoparticles
Languages : en
Pages : 277

Book Description
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Optical and Magnetic Properties of Nanostructures

Optical and Magnetic Properties of Nanostructures PDF Author: Neha Nayyar
Publisher:
ISBN:
Category :
Languages : en
Pages : 149

Book Description
The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.