Plasma Processes for Semiconductor Fabrication PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Plasma Processes for Semiconductor Fabrication PDF full book. Access full book title Plasma Processes for Semiconductor Fabrication by W. N. G. Hitchon. Download full books in PDF and EPUB format.

Plasma Processes for Semiconductor Fabrication

Plasma Processes for Semiconductor Fabrication PDF Author: W. N. G. Hitchon
Publisher: Cambridge University Press
ISBN: 9780521018005
Category : Technology & Engineering
Languages : en
Pages : 232

Book Description
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

Plasma Processes for Semiconductor Fabrication

Plasma Processes for Semiconductor Fabrication PDF Author: W. N. G. Hitchon
Publisher: Cambridge University Press
ISBN: 9780521018005
Category : Technology & Engineering
Languages : en
Pages : 232

Book Description
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

Plasma Processes for Semiconductor Fabrication

Plasma Processes for Semiconductor Fabrication PDF Author: W. N. G. Hitchon
Publisher: Cambridge University Press
ISBN: 0521591759
Category : Computers
Languages : en
Pages : 235

Book Description
An up-to-date description of plasma etching and deposition in semiconductor fabrication.

Particle Contamination Control in Plasma Processing

Particle Contamination Control in Plasma Processing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
Plasma processing is used for (approximately)35% of the process steps required for semiconductor manufacturing. Recent studies have shown that plasma processes create the greatest amount of contaminant dust of all the manufacturing steps required for device fabrication. Often, the level of dust in a plasma process tool exceeds the cleanroom by several orders of magnitude. Particulate contamination generated in a plasma tool can result in reliability problems as well as device failure. Inter-level wiring shorts different levels of metallization on a device is a common result of plasma particulate contamination. We have conducted a thorough study of the physics and chemistry involved in particulate formation and transport in plasma tools. In-situ laser light scattering (LLS) is used for real-time detection of the contaminant dust. The results of this work are highly surprising: all plasmas create dust; the dust can be formed by homogeneous as well as heterogeneous chemistry; this dust is charged and suspended in the plasma; additionally, it is transported to favored regions of the plasma, such as those regions immediately above wafers. Fortunately, this work has also led to a novel means of controlling and eliminating these unwanted contaminants: electrostatic {open_quotes}drainpipes{close_quotes} engineered into the electrode by means of specially designed grooves. These channel the suspended particles out of the plasma and into the pump port before they can fall onto the wafer.

Plasma Processing of Materials

Plasma Processing of Materials PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309045975
Category : Technology & Engineering
Languages : en
Pages : 88

Book Description
Plasma processing of materials is a critical technology to several of the largest manufacturing industries in the worldâ€"electronics, aerospace, automotive, steel, biomedical, and toxic waste management. This book describes the relationship between plasma processes and the many industrial applications, examines in detail plasma processing in the electronics industry, highlights the scientific foundation underlying this technology, and discusses education issues in this multidisciplinary field. The committee recommends a coordinated, focused, and well-funded research program in this area that involves the university, federal laboratory, and industrial sectors of the community. It also points out that because plasma processing is an integral part of the infrastructure of so many American industries, it is important for both the economy and the national security that America maintain a strong leadership role in this technology.

Plasma Processing of Semiconductors

Plasma Processing of Semiconductors PDF Author: P.F. Williams
Publisher: Springer Science & Business Media
ISBN: 9401158843
Category : Technology & Engineering
Languages : en
Pages : 610

Book Description
Plasma Processing of Semiconductors contains 28 contributions from 18 experts and covers plasma etching, plasma deposition, plasma-surface interactions, numerical modelling, plasma diagnostics, less conventional processing applications of plasmas, and industrial applications. Audience: Coverage ranges from introductory to state of the art, thus the book is suitable for graduate-level students seeking an introduction to the field as well as established workers wishing to broaden or update their knowledge.

Applications of Plasma Processes to VLSI Technology

Applications of Plasma Processes to VLSI Technology PDF Author: Takuo Sugano
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 426

Book Description
Presents state-of-the-art research in microelectronic processing for very large scale integration. Emphasizing applications and techniques, this book provides considerable insight into Japan's technological effort in this important area of science. Focuses on research involving plasma deposition and dry etching. Considerable attention is devoted to MOS gate fabrication, the studies of the influence of process parameters on electrical properties, dry processing technologies, and the theory of plasma chemical reactions.

Lecture Notes on Principles of Plasma Processing

Lecture Notes on Principles of Plasma Processing PDF Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 1461501814
Category : Science
Languages : en
Pages : 213

Book Description
Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes. This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.

Plasma Etching in Semiconductor Fabrication

Plasma Etching in Semiconductor Fabrication PDF Author: Russ A. Morgan
Publisher: North-Holland
ISBN: 9780444424198
Category : Science
Languages : en
Pages : 316

Book Description
Hardbound. This book is based on a post-graduate study carried out by the author on plasma etching mechanisms of semiconductor materials such as silicon, silicon dioxide, photoresist and aluminium films used in integrated circuit fabrication. In this book he gives an extensive review of the chemistry of dry etching, sustaining mechanisms and reactor architecture. He also describes a study made on the measurement of the electrical characteristics and ionization conditions existing in a planar reactor. In addition, practical problems such as photoresist mask erosion have been investigated and the reader will find the photoresist chemistry very useful. The book contains a great deal of practical information on plasma etching processes. The electronics industry is continually seeking ways to improve the miniaturization of devices, and this account of the author's findings should be a useful contribution to the work of miniaturization.

Dry Etching Technology for Semiconductors

Dry Etching Technology for Semiconductors PDF Author: Kazuo Nojiri
Publisher: Springer
ISBN: 3319102958
Category : Technology & Engineering
Languages : en
Pages : 126

Book Description
This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits. The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes. The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning etc.

Semiconductor IC Plasma Dry Etching Process

Semiconductor IC Plasma Dry Etching Process PDF Author: Kung Linliu
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 57

Book Description
Semiconductor market value of 2018 was around 468.8 billion US dollars. It is increased for about 13.7% than year 2017. For 2019, it is estimated decrease about 10% to 13% which is 422 to 408 billion US dollars.This market is in a way winner takes all, for example, TSMC (Taiwan Semiconductor Manufacturing Company) which is the world leading semiconductor foundry company has more than 50% market share. Intel has more than 90% market share of personal computer CPU (Central Process Unit) for many years. However, the semiconductor IC process technology sometimes might change the rule of market. Just recently, AMD (Advanced Micro Devices, Inc.) has more than 17% market share of personal computer CPU because they use foundry of TSMC with 7nm EUV technology node (Extreme Ultraviolet, its wavelength is 13.5 nm, shorter wavelength has better critical dimension (CD) resolution for IC process).For the present time, there are four leading semiconductor companies in the world with EUV technology process node which are as follows: (1)Samsung: the world leading semiconductor IC process company for commodity IC such as DRAM、Flash memory and IC for cell phone. The world leading company in cell phone market share, Samsung has highest volume unit of mobile phone which is 75.1 million unit representing 23% of world market share. Samsung also is the leading company in OLED (organic light emitting diode) process technology and display panel which is more than 90% of world market share.(2)Intel: is the world leading company in personal computer CPU which has more than 90% market share of personal computer CPU (Central Process Unit) for many years. Intel is actually a world leading semiconductor IC technology in DRAM (many years ago) and Flash (at the present time) memory.(3)TSMC: TSMC is brief of Taiwan Semiconductor Manufacturing Company which is the world leading semiconductor foundry company has more than 50% market share. The author worked there for a few years as an R & D manager many years ago.(4)Micron: a world leading in DRAM and Flash memory IC.