Author: Jen-Tsung Chen
Publisher: CRC Press
ISBN: 1040091229
Category : Science
Languages : en
Pages : 410
Book Description
The research field of “plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. Plant Speed Breeding and High-Throughput Technologies explores and analyzes a range of innovations from CRISPR/Cas9-based genome editing to state-of-the-art controlled-environment growth chambers. The book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies. It examines the applications of technologies across major model plants and key crops such as cereals, vegetables, and fruit trees. The book explores high-throughput genotyping using next-generation sequencing systems, enabling precise single nucleotide polymorphism markers, quantitative trait loci mapping, and genome-wide association studies . These tools are used in identifying candidate genes that will revolutionize crop breeding, as they are capable of tolerating complex abiotic and biotic stresses induced by global climate change. Serving as an ideal reference on plant speed breeding technologies, this book is for graduate students, teachers, researchers, and experts in the fields of plant sciences and plant breeding as well as agronomy and agriculture.
Plant Speed Breeding and High-throughput Technologies
Author: Jen-Tsung Chen
Publisher: CRC Press
ISBN: 1040091229
Category : Science
Languages : en
Pages : 410
Book Description
The research field of “plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. Plant Speed Breeding and High-Throughput Technologies explores and analyzes a range of innovations from CRISPR/Cas9-based genome editing to state-of-the-art controlled-environment growth chambers. The book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies. It examines the applications of technologies across major model plants and key crops such as cereals, vegetables, and fruit trees. The book explores high-throughput genotyping using next-generation sequencing systems, enabling precise single nucleotide polymorphism markers, quantitative trait loci mapping, and genome-wide association studies . These tools are used in identifying candidate genes that will revolutionize crop breeding, as they are capable of tolerating complex abiotic and biotic stresses induced by global climate change. Serving as an ideal reference on plant speed breeding technologies, this book is for graduate students, teachers, researchers, and experts in the fields of plant sciences and plant breeding as well as agronomy and agriculture.
Publisher: CRC Press
ISBN: 1040091229
Category : Science
Languages : en
Pages : 410
Book Description
The research field of “plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. Plant Speed Breeding and High-Throughput Technologies explores and analyzes a range of innovations from CRISPR/Cas9-based genome editing to state-of-the-art controlled-environment growth chambers. The book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies. It examines the applications of technologies across major model plants and key crops such as cereals, vegetables, and fruit trees. The book explores high-throughput genotyping using next-generation sequencing systems, enabling precise single nucleotide polymorphism markers, quantitative trait loci mapping, and genome-wide association studies . These tools are used in identifying candidate genes that will revolutionize crop breeding, as they are capable of tolerating complex abiotic and biotic stresses induced by global climate change. Serving as an ideal reference on plant speed breeding technologies, this book is for graduate students, teachers, researchers, and experts in the fields of plant sciences and plant breeding as well as agronomy and agriculture.
High-Throughput Crop Phenotyping
Author: Jianfeng Zhou
Publisher: Springer Nature
ISBN: 3030737349
Category : Science
Languages : en
Pages : 249
Book Description
This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology.
Publisher: Springer Nature
ISBN: 3030737349
Category : Science
Languages : en
Pages : 249
Book Description
This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology.
Plant Speed Breeding and High-throughput Technologies
Author: Jen-Tsung Chen
Publisher:
ISBN: 9781032562681
Category : Genomics
Languages : en
Pages : 0
Book Description
"The emerging research field of "plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. This book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies and the applications in significant crops, such as Arabidopsis, rice, wheat, maize, and soybean. This book is an ideal reference on plant speed breeding technologies for graduate students, teachers, researchers, and experts in the field of plant sciences, plant breeding as well as agronomy and agriculture"--
Publisher:
ISBN: 9781032562681
Category : Genomics
Languages : en
Pages : 0
Book Description
"The emerging research field of "plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. This book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies and the applications in significant crops, such as Arabidopsis, rice, wheat, maize, and soybean. This book is an ideal reference on plant speed breeding technologies for graduate students, teachers, researchers, and experts in the field of plant sciences, plant breeding as well as agronomy and agriculture"--
Rice Functional Genomics
Author: Narayana M. Upadhyaya
Publisher: Springer
ISBN: 9781441923752
Category : Science
Languages : en
Pages : 0
Book Description
Rice has been chosen as a model cereal for functional genomics because of its well understood genetics. In addition, there is great similarities among all the cereals and grasses: any understanding of rice genes is directly applicable to the genes of other cereals. This book details rice functional genomics. It takes a multi-pronged genome-wide approach using structural similarities, expression profiles, and mutant phenotypes. Coverage includes the current status of genome sequencing and annotation, various tools, and resources being developed worldwide.
Publisher: Springer
ISBN: 9781441923752
Category : Science
Languages : en
Pages : 0
Book Description
Rice has been chosen as a model cereal for functional genomics because of its well understood genetics. In addition, there is great similarities among all the cereals and grasses: any understanding of rice genes is directly applicable to the genes of other cereals. This book details rice functional genomics. It takes a multi-pronged genome-wide approach using structural similarities, expression profiles, and mutant phenotypes. Coverage includes the current status of genome sequencing and annotation, various tools, and resources being developed worldwide.
Plant Breeding: Past, Present and Future
Author: John E. Bradshaw
Publisher: Springer
ISBN: 3319232851
Category : Science
Languages : en
Pages : 710
Book Description
This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.
Publisher: Springer
ISBN: 3319232851
Category : Science
Languages : en
Pages : 710
Book Description
This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.
PlantOmics: The Omics of Plant Science
Author: Debmalya Barh
Publisher: Springer
ISBN: 8132221729
Category : Science
Languages : en
Pages : 839
Book Description
PlantOmics: The Omics of Plant Science provides a comprehensive account of the latest trends and developments of omics technologies or approaches and their applications in plant science. Thirty chapters written by 90 experts from 15 countries are included in this state-of-the-art book. Each chapter describes one topic/omics such as: omics in model plants, spectroscopy for plants, next generation sequencing, functional genomics, cyto-metagenomics, epigenomics, miRNAomics, proteomics, metabolomics, glycomics, lipidomics, secretomics, phenomics, cytomics, physiomics, signalomics, thiolomics, organelle omics, micro morphomics, microbiomics, cryobionomics, nanotechnology, pharmacogenomics, and computational systems biology for plants. It provides up to date information, technologies, and their applications that can be adopted and applied easily for deeper understanding plant biology and therefore will be helpful in developing the strategy for generating cost-effective superior plants for various purposes. In the last chapter, the editors have proposed several new areas in plant omics that may be explored in order to develop an integrated meta-omics strategy to ensure the world and earth’s health and related issues. This book will be a valuable resource to students and researchers in the field of cutting-edge plant omics.
Publisher: Springer
ISBN: 8132221729
Category : Science
Languages : en
Pages : 839
Book Description
PlantOmics: The Omics of Plant Science provides a comprehensive account of the latest trends and developments of omics technologies or approaches and their applications in plant science. Thirty chapters written by 90 experts from 15 countries are included in this state-of-the-art book. Each chapter describes one topic/omics such as: omics in model plants, spectroscopy for plants, next generation sequencing, functional genomics, cyto-metagenomics, epigenomics, miRNAomics, proteomics, metabolomics, glycomics, lipidomics, secretomics, phenomics, cytomics, physiomics, signalomics, thiolomics, organelle omics, micro morphomics, microbiomics, cryobionomics, nanotechnology, pharmacogenomics, and computational systems biology for plants. It provides up to date information, technologies, and their applications that can be adopted and applied easily for deeper understanding plant biology and therefore will be helpful in developing the strategy for generating cost-effective superior plants for various purposes. In the last chapter, the editors have proposed several new areas in plant omics that may be explored in order to develop an integrated meta-omics strategy to ensure the world and earth’s health and related issues. This book will be a valuable resource to students and researchers in the field of cutting-edge plant omics.
Raspberry
Author: Julie Graham
Publisher: Springer
ISBN: 3319990314
Category : Science
Languages : en
Pages : 169
Book Description
Raspberry is a globally-significant soft fruit crop, with increasing interest to consumers due to its versatility and health-related constituents. In this background context, it is therefore timely to consider the present and future status of the raspberry crop, particularly with the advances in the use of molecular tools and plant phenotyping to improve our understanding of improving crop quality and fruit yields. Since the 1980s a wealth of fundamental genomics and metabolomics resources have been developed for soft fruits including linkage maps, physical maps, QTLs and expression tools. However, a number of serious and emerging challenges exist for the raspberry industry, including the plants’ ability to resist major pest and disease burdens and the impact of climate change on crop production, specifically water use and water availability for soft fruit crops. This book aims to address some of these challenges by updating the information known about this important crop, its health value, the major pest and diseases which affect raspberry and approaches for their control, and the speed and precision offered by selective breeding programs by the deployment of molecular tools and linkage maps for germplasm assessment. Understanding the genetic control of commercially and nutritionally important traits and the linkage of these characteristics to molecular markers on chromosomes is the future basis of plant breeding. We will also introduce the opportunity to fast track breeding by improving the speed of phenotypic selection by utilizing imaging sensor technologies, thereby reducing the cost of years of field assessment through developing this knowledge into markers linked to key fruit traits. The chapters of this book will span the knowledge gained from the collaborations between growers, plant breeders, plant physiologists, soil scientists, geneticists, agronomists and physicists which is essential to achieve progress in improving productivity and a sustainable industry.
Publisher: Springer
ISBN: 3319990314
Category : Science
Languages : en
Pages : 169
Book Description
Raspberry is a globally-significant soft fruit crop, with increasing interest to consumers due to its versatility and health-related constituents. In this background context, it is therefore timely to consider the present and future status of the raspberry crop, particularly with the advances in the use of molecular tools and plant phenotyping to improve our understanding of improving crop quality and fruit yields. Since the 1980s a wealth of fundamental genomics and metabolomics resources have been developed for soft fruits including linkage maps, physical maps, QTLs and expression tools. However, a number of serious and emerging challenges exist for the raspberry industry, including the plants’ ability to resist major pest and disease burdens and the impact of climate change on crop production, specifically water use and water availability for soft fruit crops. This book aims to address some of these challenges by updating the information known about this important crop, its health value, the major pest and diseases which affect raspberry and approaches for their control, and the speed and precision offered by selective breeding programs by the deployment of molecular tools and linkage maps for germplasm assessment. Understanding the genetic control of commercially and nutritionally important traits and the linkage of these characteristics to molecular markers on chromosomes is the future basis of plant breeding. We will also introduce the opportunity to fast track breeding by improving the speed of phenotypic selection by utilizing imaging sensor technologies, thereby reducing the cost of years of field assessment through developing this knowledge into markers linked to key fruit traits. The chapters of this book will span the knowledge gained from the collaborations between growers, plant breeders, plant physiologists, soil scientists, geneticists, agronomists and physicists which is essential to achieve progress in improving productivity and a sustainable industry.
Stress Tolerance in Horticultural Crops
Author: Ajay Kumar
Publisher: Woodhead Publishing
ISBN: 0323853633
Category : Science
Languages : en
Pages : 442
Book Description
Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. - Describes advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops - Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance - Includes advancements in OMICS approaches in horticultural crops
Publisher: Woodhead Publishing
ISBN: 0323853633
Category : Science
Languages : en
Pages : 442
Book Description
Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. - Describes advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops - Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance - Includes advancements in OMICS approaches in horticultural crops
Phenotyping for Plant Breeding
Author: Siva Kumar Panguluri
Publisher: Springer Science & Business Media
ISBN: 1461483204
Category : Science
Languages : en
Pages : 220
Book Description
Plant phenotyping is the thorough assessment of plant traits such as growth, development, adaptation, yield, quality, tolerance, resistance, architecture, and the basic measurement of individual quantitative parameters that form the basis for understanding of traits. Genetic approaches to understand plant growth and development have always benefitted from phenotyping techniques that are simple, rapid and measurable in units. The forward genetics approach is all about understanding the trait inheritance using the phenotypic data and in most cases it is the mutant phenotypes that formed the basis for understanding of gene functions. With rapid advancement of genotyping techniques, high throughput genotyping has become a reality at costs people never imagined to be that low, but the phenotypic methods did not receive same attention. However, without quality phenotyping data the genotyping data cannot be effectively put to use in plant improvement. Therefore efforts are underway to develop high-throughput phenotyping methods in plants to keep pace with revolutionary advancement in genotyping techniques to enhance the efficiency of crop improvement programs. Keeping this in mind, we described in this book the best phenomic tools available for trait improvement in some of the world’s most important crop plants.
Publisher: Springer Science & Business Media
ISBN: 1461483204
Category : Science
Languages : en
Pages : 220
Book Description
Plant phenotyping is the thorough assessment of plant traits such as growth, development, adaptation, yield, quality, tolerance, resistance, architecture, and the basic measurement of individual quantitative parameters that form the basis for understanding of traits. Genetic approaches to understand plant growth and development have always benefitted from phenotyping techniques that are simple, rapid and measurable in units. The forward genetics approach is all about understanding the trait inheritance using the phenotypic data and in most cases it is the mutant phenotypes that formed the basis for understanding of gene functions. With rapid advancement of genotyping techniques, high throughput genotyping has become a reality at costs people never imagined to be that low, but the phenotypic methods did not receive same attention. However, without quality phenotyping data the genotyping data cannot be effectively put to use in plant improvement. Therefore efforts are underway to develop high-throughput phenotyping methods in plants to keep pace with revolutionary advancement in genotyping techniques to enhance the efficiency of crop improvement programs. Keeping this in mind, we described in this book the best phenomic tools available for trait improvement in some of the world’s most important crop plants.
Plant Genetics and Molecular Biology
Author: Rajeev K. Varshney
Publisher: Springer
ISBN: 3319913131
Category : Science
Languages : en
Pages : 306
Book Description
This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture.
Publisher: Springer
ISBN: 3319913131
Category : Science
Languages : en
Pages : 306
Book Description
This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture.