Author: Prashant Swapnil
Publisher: Academic Press
ISBN: 0323985084
Category : Science
Languages : en
Pages : 450
Book Description
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. - Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere - Helps readers understand the molecular and biochemical approaches of plant-microbe interactions - Enables an understanding of plant microbe interactions which will help to improve crop production
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches
Author: Prashant Swapnil
Publisher: Academic Press
ISBN: 0323985084
Category : Science
Languages : en
Pages : 450
Book Description
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. - Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere - Helps readers understand the molecular and biochemical approaches of plant-microbe interactions - Enables an understanding of plant microbe interactions which will help to improve crop production
Publisher: Academic Press
ISBN: 0323985084
Category : Science
Languages : en
Pages : 450
Book Description
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. - Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere - Helps readers understand the molecular and biochemical approaches of plant-microbe interactions - Enables an understanding of plant microbe interactions which will help to improve crop production
Molecular Aspects of Plant Beneficial Microbes in Agriculture
Author: Vivek Sharma
Publisher: Academic Press
ISBN: 0128184698
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
Publisher: Academic Press
ISBN: 0128184698
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
Principles of Plant-Microbe Interactions
Author: Ben Lugtenberg
Publisher: Springer
ISBN: 3319085751
Category : Science
Languages : en
Pages : 447
Book Description
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Publisher: Springer
ISBN: 3319085751
Category : Science
Languages : en
Pages : 447
Book Description
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Plant-Microbe Interactions in the Rhizosphere
Author: Adam Schikora
Publisher:
ISBN: 9781912530007
Category : Science
Languages : en
Pages : 114
Book Description
In this volume expert authors review current research on diverse aspects of the interactions which occur in the rhizosphere between the host plant and the microorganisms. The chapters focus on specific phenomena, from the biochemical and genetical level to complex inter-organism communication.
Publisher:
ISBN: 9781912530007
Category : Science
Languages : en
Pages : 114
Book Description
In this volume expert authors review current research on diverse aspects of the interactions which occur in the rhizosphere between the host plant and the microorganisms. The chapters focus on specific phenomena, from the biochemical and genetical level to complex inter-organism communication.
Molecular Aspects of Plant-Pathogen Interaction
Author: Archana Singh
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Microbial Management of Plant Stresses
Author: Ajay Kumar
Publisher: Woodhead Publishing
ISBN: 0323859208
Category : Science
Languages : en
Pages : 282
Book Description
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. - Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience - Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance - Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment
Publisher: Woodhead Publishing
ISBN: 0323859208
Category : Science
Languages : en
Pages : 282
Book Description
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. - Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience - Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance - Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment
Plant-Microbe Interactions
Author: B.B. Biswas
Publisher: Springer Science & Business Media
ISBN: 9780306456787
Category : Science
Languages : en
Pages : 472
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Publisher: Springer Science & Business Media
ISBN: 9780306456787
Category : Science
Languages : en
Pages : 472
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Plant Pathology
Author: Christian Joseph Cumagun
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Plant-microbe Interactions 2
Author: Gary Stacey
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches
Author: Harish
Publisher: Elsevier
ISBN: 032391876X
Category : Science
Languages : en
Pages : 448
Book Description
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere Helps readers understand the molecular and biochemical approaches of plant-microbe interactions Enables an understanding of plant microbe interactions which will help to improve crop production
Publisher: Elsevier
ISBN: 032391876X
Category : Science
Languages : en
Pages : 448
Book Description
Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches: Agricultural Aspects of Microbiome Leading to Plant Defence, Volume Two continues the work of Volume One, covering the role of these plant microbes and their interaction between plants and microbes. These beneficial microbes, such as bacteria and fungi are also known as plant growth-promoting rhizobacteria (PGPR) through a biochemical reaction that may improve induced systemic resistance in the plant host via indirectly (against phytopathogens) or directly (the solubilization of mineral nutrients) by producing phytohormones and specific enzymes such as 1-aminocyclopropane-1-carboxylate deaminase. The book covers biochemical processes such as physiological, metabolic, etc. of plant and microbe interactions, the biochemistry of biological systems, the interaction of biological systems above-ground or within the rhizosphere, and the history of growth promoting microbiomes, their roles in phytoremediation efficiency, physiological and biochemical studies, chemical communication and signaling mechanisms. Covers agricultural aspects in which the biochemistry in between plants and microbes helps us understand interactions in the rhizosphere Helps readers understand the molecular and biochemical approaches of plant-microbe interactions Enables an understanding of plant microbe interactions which will help to improve crop production