Plane Waves and Spherical Means Applied to Partial Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Plane Waves and Spherical Means Applied to Partial Differential Equations PDF full book. Access full book title Plane Waves and Spherical Means Applied to Partial Differential Equations by Fritz John. Download full books in PDF and EPUB format.

Plane Waves and Spherical Means Applied to Partial Differential Equations

Plane Waves and Spherical Means Applied to Partial Differential Equations PDF Author: Fritz John
Publisher: Courier Corporation
ISBN: 9780486438047
Category : Mathematics
Languages : en
Pages : 196

Book Description
This collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results follow from those identities. 1955 edition.

Plane Waves and Spherical Means Applied to Partial Differential Equations

Plane Waves and Spherical Means Applied to Partial Differential Equations PDF Author: Fritz John
Publisher: Courier Corporation
ISBN: 9780486438047
Category : Mathematics
Languages : en
Pages : 196

Book Description
This collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results follow from those identities. 1955 edition.

Plane Waves and Numerical Means Applied to Partial Differential Equations

Plane Waves and Numerical Means Applied to Partial Differential Equations PDF Author: Fritz John
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Plane Waves and Spherical Means

Plane Waves and Spherical Means PDF Author: F. John
Publisher: Springer Science & Business Media
ISBN: 1461394538
Category : Mathematics
Languages : en
Pages : 174

Book Description
The author would like to acknowledge his obligation to all his (;Olleagues and friends at the Institute of Mathematical Sciences of New York University for their stimulation and criticism which have contributed to the writing of this tract. The author also wishes to thank Aughtum S. Howard for permission to include results from her unpublished dissertation, Larkin Joyner for drawing the figures, Interscience Publishers for their cooperation and support, and particularly Lipman Bers, who suggested the publication in its present form. New Rochelle FRITZ JOHN September, 1955 [v] CONTENTS Introduction. . . . . . . 1 CHAPTER I Decomposition of an Arbitrary Function into Plane Waves Explanation of notation . . . . . . . . . . . . . . . 7 The spherical mean of a function of a single coordinate. 7 9 Representation of a function by its plane integrals . CHAPTER II Tbe Initial Value Problem for Hyperbolic Homogeneous Equations with Constant Coefficients Hyperbolic equations. . . . . . . . . . . . . . . . . . . . . . 15 Geometry of the normal surface for a strictly hyperbolic equation. 16 Solution of the Cauchy problem for a strictly hyperbolic equation . 20 Expression of the kernel by an integral over the normal surface. 23 The domain of dependence . . . . . . . . . . . . . . . . . . . 29 The wave equation . . . . . . . . . . . . . . . . . . . . . . 32 The initial value problem for hyperbolic equations with a normal surface having multiple points . . . . . . . . . . . . . . . . . . . . 36 CHAPTER III The Fundamental Solution of a Linear Elliptic Differential Equation witL Analytic Coefficients Definition of a fundamental solution . . . . . . . . . . . . . . 43 The Cauchy problem . . . . . . . . . . . . . . . . . . . . . 45 Solution of the inhomogeneous equation with a plane wave function as right hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 The fundamental solution. . . . . . . . . . . . . . . . . . . . . .

Applied Partial Differential Equations: An Introduction

Applied Partial Differential Equations: An Introduction PDF Author: Alan Jeffrey
Publisher: Academic Press
ISBN: 9780123822529
Category : Mathematics
Languages : en
Pages : 412

Book Description
This book is written to meet the needs of undergraduates in applied mathematics, physics and engineering studying partial differential equations. It is a more modern, comprehensive treatment intended for students who need more than the purely numerical solutions provided by programs like the MATLAB PDE Toolbox, and those obtained by the method of separation of variables, which is usually the only theoretical approach found in the majority of elementary textbooks. This will fill a need in the market for a more modern text for future working engineers, and one that students can read and understand much more easily than those currently on the market. * Includes new and important materials necessary to meet current demands made by diverse applications * Very detailed solutions to odd numbered problems to help students * Instructor's Manual Available

Plane Waves and Spherical Menas Applied to Partial Differential Equations

Plane Waves and Spherical Menas Applied to Partial Differential Equations PDF Author: Fritz John
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 423

Book Description


Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers PDF Author: Moysey Brio
Publisher: Academic Press
ISBN: 0080917046
Category : Mathematics
Languages : en
Pages : 306

Book Description
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Plane Waves and Spherical Means Applied to Partial Differential Equations

Plane Waves and Spherical Means Applied to Partial Differential Equations PDF Author: Fritz John
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 188

Book Description


Surveys in Applied Mathematics

Surveys in Applied Mathematics PDF Author: Joseph B. Keller
Publisher: Springer
ISBN: 1489904360
Category : Mathematics
Languages : en
Pages : 273

Book Description
Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.

Waves And Distributions

Waves And Distributions PDF Author: Jonsson Thordur
Publisher: World Scientific
ISBN: 981310452X
Category : Science
Languages : en
Pages : 196

Book Description
This book begins with an introduction on continuum mechanics and a derivation of the linear partial differential equations for sound waves in fluids and elastic waves in solids. There is a brief chapter on the wave equations of electrodynamics. This is followed by a description of plane wave solutions and a discussion of concepts like reflection, refraction, polarization and the role of boundary conditions.The second part of the book deals with the theory and applications of distributions and Fourier transforms. Furthermore, dispersion, the method of stationary phase, Kramers-Kronig relations and various examples including surface waves on liquids are discussed.This text is unique because it emphasizes the use of distributions to analyze the solutions of the wave equation. The treatment of continuum mechanics is self-contained, as well as the discussion on distributions and Fourier transforms. In addition, many classical methods of theoretical physics are thoroughly discussed, e.g. the use of Green functions and multipole expansions.