Pixel N-grams for Mammographic Image Classification PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Pixel N-grams for Mammographic Image Classification PDF full book. Access full book title Pixel N-grams for Mammographic Image Classification by Pradnya Kulkarni. Download full books in PDF and EPUB format.

Pixel N-grams for Mammographic Image Classification

Pixel N-grams for Mammographic Image Classification PDF Author: Pradnya Kulkarni
Publisher:
ISBN:
Category : Breast
Languages : en
Pages : 312

Book Description
"X-ray screening for breast cancer is an important public health initiative in the management of a leading cause of death for women. However, screening is expensive if mammograms are required to be manually assessed by radiologists. Moreover, manual screening is subject to perception and interpretation errors. Computer aided detection/diagnosis (CAD) systems can help radiologists as computer algorithms are good at performing image analysis consistently and repetitively. However, image features that enhance CAD classification accuracies are necessary for CAD systems to be deployed. Many CAD systems have been developed but the specificity and sensitivity is not high; in part because of challenges inherent in identifying effective features to be initially extracted from raw images. Existing feature extraction techniques can be grouped under three main approaches; statistical, spectral and structural. Statistical and spectral techniques provide global image features but often fail to distinguish between local pattern variations within an image. On the other hand, structural approach have given rise to the Bag-of-Visual-Words (BoVW) model, which captures local variations in an image, but typically do not consider spatial relationships between the visual "words". Moreover, statistical features and features based on BoVW models are computationally very expensive. Similarly, structural feature computation methods other than BoVW are also computationally expensive and strongly dependent upon algorithms that can segment an image to localize a region of interest likely to contain the tumour. Thus, classification algorithms using structural features require high resource computers. In order for a radiologist to classify the lesions on low resource computers such as Ipads, Tablets, and Mobile phones, in a remote location, it is necessary to develop computationally inexpensive classification algorithms. Therefore, the overarching aim of this research is to discover a feature extraction/image representation model which can be used to classify mammographic lesions with high accuracy, sensitivity and specificity along with low computational cost. For this purpose a novel feature extraction technique called 'Pixel N-grams' is proposed. The Pixel N-grams approach is inspired from the character N-gram concept in text categorization. Here, N number of consecutive pixel intensities are considered in a particular direction. The image is then represented with the help of histogram of occurrences of the Pixel N-grams in an image. Shape and texture of mammographic lesions play an important role in determining the malignancy of the lesion. It was hypothesized that the Pixel N-grams would be able to distinguish between various textures and shapes. Experiments carried out on benchmark texture databases and binary basic shapes database have demonstrated that the hypothesis was correct. Moreover, the Pixel N-grams were able to distinguish between various shapes irrespective of size and location of shape in an image. The efficacy of the Pixel N-gram technique was tested on mammographic database of primary digital mammograms sourced from a radiological facility in Australia (LakeImaging Pty Ltd) and secondary digital mammograms (benchmark miniMIAS database). A senior radiologist from LakeImaging provided real time de-identified high resolution mammogram images with annotated regions of interests (which were used as groundtruth), and valuable radiological diagnostic knowledge. Two types of classifications were observed on these two datasets. Normal/abnormal classification useful for automated screening and circumscribed/speculation/normal classification useful for automated diagnosis of breast cancer. The classification results on both the mammography datasets using Pixel N-grams were promising. Classification performance (Fscore, sensitivity and specificity) using Pixel N-gram technique was observed to be significantly better than the existing techniques such as intensity histogram, co-occurrence matrix based features and comparable with the BoVW features. Further, Pixel N-gram features are found to be computationally less complex than the co-occurrence matrix based features as well as BoVW features paving the way for mammogram classification on low resource computers. Although, the Pixel N-gram technique was designed for mammographic classification, it could be applied to other image classification applications such as diabetic retinopathy, histopathological image classification, lung tumour detection using CT images, brain tumour detection using MRI images, wound image classification and tooth decay classification using dentistry x-ray images. Further, texture and shape classification is also useful for classification of real world images outside the medical domain. Therefore, the pixel N-gram technique could be extended for applications such as classification of satellite imagery and other object detection tasks." -- Abstract.

Pixel N-grams for Mammographic Image Classification

Pixel N-grams for Mammographic Image Classification PDF Author: Pradnya Kulkarni
Publisher:
ISBN:
Category : Breast
Languages : en
Pages : 312

Book Description
"X-ray screening for breast cancer is an important public health initiative in the management of a leading cause of death for women. However, screening is expensive if mammograms are required to be manually assessed by radiologists. Moreover, manual screening is subject to perception and interpretation errors. Computer aided detection/diagnosis (CAD) systems can help radiologists as computer algorithms are good at performing image analysis consistently and repetitively. However, image features that enhance CAD classification accuracies are necessary for CAD systems to be deployed. Many CAD systems have been developed but the specificity and sensitivity is not high; in part because of challenges inherent in identifying effective features to be initially extracted from raw images. Existing feature extraction techniques can be grouped under three main approaches; statistical, spectral and structural. Statistical and spectral techniques provide global image features but often fail to distinguish between local pattern variations within an image. On the other hand, structural approach have given rise to the Bag-of-Visual-Words (BoVW) model, which captures local variations in an image, but typically do not consider spatial relationships between the visual "words". Moreover, statistical features and features based on BoVW models are computationally very expensive. Similarly, structural feature computation methods other than BoVW are also computationally expensive and strongly dependent upon algorithms that can segment an image to localize a region of interest likely to contain the tumour. Thus, classification algorithms using structural features require high resource computers. In order for a radiologist to classify the lesions on low resource computers such as Ipads, Tablets, and Mobile phones, in a remote location, it is necessary to develop computationally inexpensive classification algorithms. Therefore, the overarching aim of this research is to discover a feature extraction/image representation model which can be used to classify mammographic lesions with high accuracy, sensitivity and specificity along with low computational cost. For this purpose a novel feature extraction technique called 'Pixel N-grams' is proposed. The Pixel N-grams approach is inspired from the character N-gram concept in text categorization. Here, N number of consecutive pixel intensities are considered in a particular direction. The image is then represented with the help of histogram of occurrences of the Pixel N-grams in an image. Shape and texture of mammographic lesions play an important role in determining the malignancy of the lesion. It was hypothesized that the Pixel N-grams would be able to distinguish between various textures and shapes. Experiments carried out on benchmark texture databases and binary basic shapes database have demonstrated that the hypothesis was correct. Moreover, the Pixel N-grams were able to distinguish between various shapes irrespective of size and location of shape in an image. The efficacy of the Pixel N-gram technique was tested on mammographic database of primary digital mammograms sourced from a radiological facility in Australia (LakeImaging Pty Ltd) and secondary digital mammograms (benchmark miniMIAS database). A senior radiologist from LakeImaging provided real time de-identified high resolution mammogram images with annotated regions of interests (which were used as groundtruth), and valuable radiological diagnostic knowledge. Two types of classifications were observed on these two datasets. Normal/abnormal classification useful for automated screening and circumscribed/speculation/normal classification useful for automated diagnosis of breast cancer. The classification results on both the mammography datasets using Pixel N-grams were promising. Classification performance (Fscore, sensitivity and specificity) using Pixel N-gram technique was observed to be significantly better than the existing techniques such as intensity histogram, co-occurrence matrix based features and comparable with the BoVW features. Further, Pixel N-gram features are found to be computationally less complex than the co-occurrence matrix based features as well as BoVW features paving the way for mammogram classification on low resource computers. Although, the Pixel N-gram technique was designed for mammographic classification, it could be applied to other image classification applications such as diabetic retinopathy, histopathological image classification, lung tumour detection using CT images, brain tumour detection using MRI images, wound image classification and tooth decay classification using dentistry x-ray images. Further, texture and shape classification is also useful for classification of real world images outside the medical domain. Therefore, the pixel N-gram technique could be extended for applications such as classification of satellite imagery and other object detection tasks." -- Abstract.

Hybrid Machine Intelligence for Medical Image Analysis

Hybrid Machine Intelligence for Medical Image Analysis PDF Author: Siddhartha Bhattacharyya
Publisher: Springer
ISBN: 9811389306
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.

Computer Vision and Recognition Systems

Computer Vision and Recognition Systems PDF Author: Chiranji Lal Chowdhary
Publisher: CRC Press
ISBN: 1000400778
Category : Science
Languages : en
Pages : 272

Book Description
This cutting-edge volume focuses on how artificial intelligence can be used to give computers the ability to imitate human sight. With contributions from researchers in diverse countries, including Thailand, Spain, Japan, Turkey, Australia, and India, the book explains the essential modules that are necessary for comprehending artificial intelligence experiences to provide machines with the power of vision. The volume also presents innovative research developments, applications, and current trends in the field. The chapters cover such topics as visual quality improvement, Parkinson’s disease diagnosis, hypertensive retinopathy detection through retinal fundus, big image data processing, N-grams for image classification, medical brain images, chatbot applications, credit score improvisation, vision-based vehicle lane detection, damaged vehicle parts recognition, partial image encryption of medical images, and image synthesis. The chapter authors show different approaches to computer vision, image processing, and frameworks for machine learning to build automated and stable applications. Deep learning is included for making immersive application-based systems, pattern recognition, and biometric systems. The book also considers efficiency and comparison at various levels of using algorithms for real-time applications, processes, and analysis.

Classification of Mammogram Images

Classification of Mammogram Images PDF Author: Supriya Salve
Publisher: Anchor Academic Publishing
ISBN: 3960671415
Category : Medical
Languages : en
Pages : 53

Book Description
Breast cancer is the most common type of cancer in women, which also causes the most cancer deaths among them today. Mammography is the only reliable method to detect breast cancer in the early stage among all diagnostic methods available currently. Breast cancer can occur in both men and women and is defined as an abnormal growth of cells in the breast that multiply uncontrollably. The main factors which cause breast cancer are either hormonal or genetic. Masses are quite subtle, and have many shapes such as circumscribed, speculated or ill-defined. These tumors can be either benign or malignant. Computer-aided methods are powerful tools to assist the medical staff in hospitals and lead to better and more accurate diagnosis. The main objective of this research is to develop a Computer Aided Diagnosis (CAD) system for finding the tumors in the mammographic images and classifying the tumors as benign or malignant. There are five main phases involved in the proposed CAD system: image pre-processing, extraction of features from mammographic images using Gabor Wavelet and Discrete Wavelet Transform (DWT), dimensionality reduction using Principal Component Analysis (PCA) and classification using Support Vector Machine (SVM) classifier.

Third Congress on Intelligent Systems

Third Congress on Intelligent Systems PDF Author: Sandeep Kumar
Publisher: Springer Nature
ISBN: 9811992258
Category : Technology & Engineering
Languages : en
Pages : 836

Book Description
This book is a collection of selected papers presented at the Third Congress on Intelligent Systems (CIS 2022), organized by CHRIST (Deemed to be University), Bangalore, India, under the technical sponsorship of the Soft Computing Research Society, India, during September 5–6, 2022. It includes novel and innovative work from experts, practitioners, scientists, and decision-makers from academia and industry. It covers topics such as the Internet of Things, information security, embedded systems, real-time systems, cloud computing, big data analysis, quantum computing, automation systems, bio-inspired intelligence, cognitive systems, cyber-physical systems, data analytics, data/web mining, data science, intelligence for security, intelligent decision-making systems, intelligent information processing, intelligent transportation, artificial intelligence for machine vision, imaging sensors technology, image segmentation, convolutional neural network, image/video classification, soft computing for machine vision, pattern recognition, human-computer interaction, robotic devices and systems, autonomous vehicles, intelligent control systems, human motor control, game playing, evolutionary algorithms, swarm optimization, neural network, deep learning, supervised learning, unsupervised learning, fuzzy logic, rough sets, computational optimization, and neuro-fuzzy systems.

Biomedical Signal and Image Processing in Patient Care

Biomedical Signal and Image Processing in Patient Care PDF Author: Kolekar, Maheshkumar H.
Publisher: IGI Global
ISBN: 152252830X
Category : Technology & Engineering
Languages : en
Pages : 333

Book Description
In healthcare systems, medical devices help physicians and specialists in diagnosis, prognosis, and therapeutics. As research shows, validation of medical devices is significantly optimized by accurate signal processing. Biomedical Signal and Image Processing in Patient Care is a pivotal reference source for progressive research on the latest development of applications and tools for healthcare systems. Featuring extensive coverage on a broad range of topics and perspectives such as telemedicine, human machine interfaces, and multimodal data fusion, this publication is ideally designed for academicians, researchers, students, and practitioners seeking current scholarly research on real-life technological inventions.

State of the Art in Digital Mammographic Image Analysis

State of the Art in Digital Mammographic Image Analysis PDF Author: K. W. Bowyer
Publisher: World Scientific
ISBN: 9789810215095
Category : Medical
Languages : en
Pages : 312

Book Description
This book provides a detailed assessment of the state of the art in automated techniques for the analysis of digital mammogram images. Topics covered include a variety of approaches for image processing and pattern recognition aimed at assisting the physician in the task of detecting tumors from evidence in mammogram images. The chapters are written by recognized experts in the field and are revised versions of papers selected from those presented at the “First International Workshop on Mammogram Image Analysis” held in San Jose as part of the 1993 Biomedical Image Processing conference.

Physics of Mammographic Imaging

Physics of Mammographic Imaging PDF Author: Mia K. Markey
Publisher: CRC Press
ISBN: 1439875448
Category : Science
Languages : en
Pages : 321

Book Description
Due to the increasing number of digital mammograms and the advent of new kinds of three-dimensional x-ray and other forms of medical imaging, mammography is undergoing a dramatic change. To meet their responsibilities, medical physicists must constantly renew their knowledge of advances in medical imaging or radiation therapy, and must be prepared to function at the intersection of these two fields. Physics of Mammographic Imaging gives an overview on the current role and future potential of new alternatives to mammography in the context of clinical need, complementary approaches, and ongoing research. This book provides comprehensive coverage on the fundamentals of image formation, image interpretation, analysis, and modeling. It discusses the use of mammographic imaging in the detection, diagnosis, treatment planning, and monitoring of breast cancer. Expert authors give a balanced summary of core topics such as digital mammography, contrast-enhanced mammography, stereomammography, breast tomosynthesis, and breast CT. The book highlights the use of mammographic imaging with complementary breast imaging modalities such as ultrasound, MRI, and nuclear medicine techniques. It discusses critical issues such as computer-aided diagnosis, perception, and quality assurance. This is an exciting time in the development of medical imaging, with many new technologies poised to make a substantial impact on breast cancer care. This book will help researchers and students get up to speed on crucial developments and contribute to future advances in the field.

State Of The Art In Digital Mammographic Image Analysis

State Of The Art In Digital Mammographic Image Analysis PDF Author: Sue Astley
Publisher: World Scientific
ISBN: 9814502839
Category : Computers
Languages : en
Pages : 307

Book Description
This book provides a detailed assessment of the state of the art in automated techniques for the analysis of digital mammogram images. Topics covered include a variety of approaches for image processing and pattern recognition aimed at assisting the physician in the task of detecting tumors from evidence in mammogram images. The chapters are written by recognized experts in the field and are revised versions of papers selected from those presented at the “First International Workshop on Mammogram Image Analysis” held in San Jose as part of the 1993 Biomedical Image Processing conference.

Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer

Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer PDF Author: Paola Casti
Publisher: Morgan & Claypool Publishers
ISBN: 1681731576
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.