Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 0821826778
Category : Mathematics
Languages : en
Pages : 308
Book Description
The AMS History of Mathematics series is one of the most popular items for bookstore sales. These books feature colorful, attractive covers that are perfect for face out displays. The topics will appeal to a broad audience in the mathematical and scientific communities.
Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer
Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 0821826778
Category : Mathematics
Languages : en
Pages : 308
Book Description
The AMS History of Mathematics series is one of the most popular items for bookstore sales. These books feature colorful, attractive covers that are perfect for face out displays. The topics will appeal to a broad audience in the mathematical and scientific communities.
Publisher: American Mathematical Soc.
ISBN: 0821826778
Category : Mathematics
Languages : en
Pages : 308
Book Description
The AMS History of Mathematics series is one of the most popular items for bookstore sales. These books feature colorful, attractive covers that are perfect for face out displays. The topics will appeal to a broad audience in the mathematical and scientific communities.
The Collected Papers of William Burnside: Commentary on Burnside's life and work ; Papers 1883-1899
Author: William Burnside
Publisher:
ISBN: 9780198505860
Category : Burnside problem
Languages : en
Pages : 818
Book Description
William Burnside was one of the three most important algebraists who were involved in the transformation of group theory from its nineteenth-century origins to a deep twentieth-century subject. Building on work of earlier mathematicians, they were able to develop sophisticated tools for solving difficult problems. All of Burnside's papers are reproduced here, organized chronologically and with a detailed bibliography. Walter Feit has contributed a foreword, and a collection of introductory essays are included to provide a commentary on Burnside's work and set it in perspective along with a modern biography that draws on archive material.
Publisher:
ISBN: 9780198505860
Category : Burnside problem
Languages : en
Pages : 818
Book Description
William Burnside was one of the three most important algebraists who were involved in the transformation of group theory from its nineteenth-century origins to a deep twentieth-century subject. Building on work of earlier mathematicians, they were able to develop sophisticated tools for solving difficult problems. All of Burnside's papers are reproduced here, organized chronologically and with a detailed bibliography. Walter Feit has contributed a foreword, and a collection of introductory essays are included to provide a commentary on Burnside's work and set it in perspective along with a modern biography that draws on archive material.
Representation Theory
Author: Amritanshu Prasad
Publisher: Cambridge University Press
ISBN: 1107082056
Category : Mathematics
Languages : en
Pages : 205
Book Description
This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Publisher: Cambridge University Press
ISBN: 1107082056
Category : Mathematics
Languages : en
Pages : 205
Book Description
This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Group Matrices, Group Determinants and Representation Theory
Author: Kenneth W. Johnson
Publisher: Springer Nature
ISBN: 3030283003
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.
Publisher: Springer Nature
ISBN: 3030283003
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.
A Tour of Representation Theory
Author: Martin Lorenz
Publisher: American Mathematical Soc.
ISBN: 1470436809
Category : Mathematics
Languages : en
Pages : 674
Book Description
Offers an introduction to four different flavours of representation theory: representations of algebras, groups, Lie algebras, and Hopf algebras. A separate part of the book is devoted to each of these areas and they are all treated in sufficient depth to enable the reader to pursue research in representation theory.
Publisher: American Mathematical Soc.
ISBN: 1470436809
Category : Mathematics
Languages : en
Pages : 674
Book Description
Offers an introduction to four different flavours of representation theory: representations of algebras, groups, Lie algebras, and Hopf algebras. A separate part of the book is devoted to each of these areas and they are all treated in sufficient depth to enable the reader to pursue research in representation theory.
Research in History and Philosophy of Mathematics
Author: Maria Zack
Publisher: Birkhäuser
ISBN: 3319466151
Category : Mathematics
Languages : en
Pages : 256
Book Description
This volume contains seventeen papers that were presented at the 2015 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques, held in Washington, D.C. In addition to showcasing rigorously reviewed modern scholarship on an interesting variety of general topics in the history and philosophy of mathematics, this meeting also honored the memories of Jacqueline (Jackie) Stedall and Ivor Grattan-Guinness; celebrated the Centennial of the Mathematical Association of America; and considered the importance of mathematical communities in a special session. These themes and many others are explored in these collected papers, which cover subjects such as New evidence that the Latin translation of Euclid’s Elements was based on the Arabic version attributed to al-Ḥajjāj Work done on the arc rampant in the seventeenth century The history of numerical methods for finding roots of nonlinear equations An original play featuring a dialogue between George Boole and Augustus De Morgan that explores the relationship between them Key issues in the digital preservation of mathematical material for future generations A look at the first twenty-five years of The American Mathematical Monthly in the context of the evolving American mathematical community The growth of Math Circles and the unique ways they are being implemented in the United States Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Publisher: Birkhäuser
ISBN: 3319466151
Category : Mathematics
Languages : en
Pages : 256
Book Description
This volume contains seventeen papers that were presented at the 2015 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques, held in Washington, D.C. In addition to showcasing rigorously reviewed modern scholarship on an interesting variety of general topics in the history and philosophy of mathematics, this meeting also honored the memories of Jacqueline (Jackie) Stedall and Ivor Grattan-Guinness; celebrated the Centennial of the Mathematical Association of America; and considered the importance of mathematical communities in a special session. These themes and many others are explored in these collected papers, which cover subjects such as New evidence that the Latin translation of Euclid’s Elements was based on the Arabic version attributed to al-Ḥajjāj Work done on the arc rampant in the seventeenth century The history of numerical methods for finding roots of nonlinear equations An original play featuring a dialogue between George Boole and Augustus De Morgan that explores the relationship between them Key issues in the digital preservation of mathematical material for future generations A look at the first twenty-five years of The American Mathematical Monthly in the context of the evolving American mathematical community The growth of Math Circles and the unique ways they are being implemented in the United States Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
An Invitation to Representation Theory
Author: R. Michael Howe
Publisher: Springer Nature
ISBN: 3030980251
Category : Mathematics
Languages : en
Pages : 236
Book Description
An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory. The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently. With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.
Publisher: Springer Nature
ISBN: 3030980251
Category : Mathematics
Languages : en
Pages : 236
Book Description
An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory. The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently. With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.
Yakov G. Berkovich; Lev S. Kazarin; Emmanuel M. Zhmud': Characters of Finite Groups. Volume 1
Author: Yakov G. Berkovich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311039054X
Category : Mathematics
Languages : en
Pages : 820
Book Description
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311039054X
Category : Mathematics
Languages : en
Pages : 820
Book Description
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
Lie Groups
Author: Daniel Bump
Publisher: Springer Science & Business Media
ISBN: 1461480248
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.
Publisher: Springer Science & Business Media
ISBN: 1461480248
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.