Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials PDF full book. Access full book title Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials by Seungchoun Choi. Download full books in PDF and EPUB format.

Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials

Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials PDF Author: Seungchoun Choi
Publisher:
ISBN:
Category :
Languages : en
Pages : 166

Book Description
With stringent requirements of copper chemical mechanical planarization (CMP), such as minimized step heights, enhanced uniformity and minimal defects, the CMP process needs to be improved based on a fundamental understanding of the material removal mechanisms. Also, with the stringent requirements, the problems in copper CMP process cannot be resolved solely improving the process itself; rather, systemic understanding of the entire manufacturing processes is necessary, demanding a robust copper CMP model to be implemented to design for manufacturing (DfM) tools. Previous models heavily relied on Preston's equation (), which needs to be calibrated for every new set of processing parameters, slowing down the process development. Previous models focused on limited interactions of the consumables and the workpiece during copper CMP, being insufficient at capturing the synergies between chemical and mechanical aspects of copper CMP. Therefore, a quantitative and physicochemical model of copper CMP that predicts material removal rate (MRR) was proposed while focusing on the interplay of consumables and copper and the synergies between chemical and mechanical aspects of the process. While considering the synergies, two mechanisms of the material removal during copper CMP were suggested: chemically dominant and mechanically dominant mechanisms. The total MRR during copper CMP was determined by summing those two contributions. The chemically dominant mechanism attributed the material removal during copper CMP to the removal of the protective material formed on the surface of copper and to the chemical dissolution of copper from the surface both at regions occupied and not occupied by the protective material with different rates. The kinetics of the formation of the protective material at the millisecond scale were studied through electrochemical experiments and theoretical analysis where a governing equation for the adsorption of benzotriazole (BTA) was constructed and solved. It was found that the grown protective material (CuBTA) during copper CMP was only a fraction of a monolayer partly occupying the surface of a wafer. This was because the time allowed for the adsorption of BTA on the surface of copper was limited by the time between consecutive asperity and copper interactions, which was only of the order of one millisecond. The formation and the removal of the protective material were assumed to be balanced during CMP, yielding a constant chemically dominant MRR. The removal of the protective material by abrasion with abrasive particles was investigated by in situ electrochemical measurement during polishing. The removal efficiency of a pad asperity where abrasive particles are embedded was evaluated from the measurements and was compared with the theoretical analysis. It showed a good agreement and suggested that the copper during CMP is mostly deformed elastically by the abrasive particles. The influence of the concentration of copper ions on the kinetics of the formation of the protective material was also investigated using potential-step chronoamperometry using two types of copper microelectrode, namely a three dimensional and a planar electrode. The amount of copper ion may easily build up to a level that exceeds the solubility product of Cu(II)BTA2. Under these conditions, Cu(II)BTA2 can nucleate, consuming the protective material formed on the surface of copper. This phenomenon is highly undesirable as it increases the dissolution rates at the regions where the protective material is removed, worsening the topography after copper CMP. The mechanically dominant MRR was determined from the volume of a wafer that is plastically deformed by indentation of abrasives that are squeezed between pad asperities and the wafer. The shear stress induced in copper by the force applied on an abrasive is lower than the ideal shear strength of copper, which is the relevant property for plasticity at this length scale. However, the crystallographic defects in the copper crystal may reduce the hardness of the material, allowing the material to be plastically deformed. Especially the roughness of the surface induced by chemical additives in the slurry greatly reduces the resistance to plastic deformation of copper. Because of the localized spatial distribution of those crystallographic defects the plastic deformation occurs only locally. Also, only a part of the plastically deformed material will be detached from the surface, contributing to the MRR. While applying this mechanism, the discrepancy of the MRR behavior with varying size and concentration of abrasives between the prediction and the experimental observations was resolved by proposing a new mechanism that determines the number of abrasives participating in the abrasion of the material. The transport mechanisms of abrasive particles toward a wafer and the electrostatic interactions between abrasives were considered to affect the number of abrasive particles deposited on the surface of a wafer. If the deposition of abrasives on the surface of a wafer is limited by the diffusion of abrasives, the MRR decreases with the size of the abrasives. In contrast, the MRR increases with the size of abrasives if the deposition of the abrasives is limited by the jamming limit of the deposited abrasives at the surface of the wafer. Also, micrometer sized abrasives increases the MRR when the size is increased because the deposition of abrasives is limited by the interception mechanism of the abrasives. The proposed model successfully captured the synergies between chemical and mechanical aspects and quantitatively predicted the MRR during copper CMP. In the future, the model will be applied to predict the pattern dependent variability of topography of a wafer after CMP. The proposed model quantitatively predicts the local MRR of copper. Along with a robust model for dielectric and barrier materials, the model can predict the topography after CMP, contributing to the optimization of the CMP process.

Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials

Physicochemical Modeling of Copper Chemical Mechanical Planarization (CMP) Considering Synergies in Removal Materials PDF Author: Seungchoun Choi
Publisher:
ISBN:
Category :
Languages : en
Pages : 166

Book Description
With stringent requirements of copper chemical mechanical planarization (CMP), such as minimized step heights, enhanced uniformity and minimal defects, the CMP process needs to be improved based on a fundamental understanding of the material removal mechanisms. Also, with the stringent requirements, the problems in copper CMP process cannot be resolved solely improving the process itself; rather, systemic understanding of the entire manufacturing processes is necessary, demanding a robust copper CMP model to be implemented to design for manufacturing (DfM) tools. Previous models heavily relied on Preston's equation (), which needs to be calibrated for every new set of processing parameters, slowing down the process development. Previous models focused on limited interactions of the consumables and the workpiece during copper CMP, being insufficient at capturing the synergies between chemical and mechanical aspects of copper CMP. Therefore, a quantitative and physicochemical model of copper CMP that predicts material removal rate (MRR) was proposed while focusing on the interplay of consumables and copper and the synergies between chemical and mechanical aspects of the process. While considering the synergies, two mechanisms of the material removal during copper CMP were suggested: chemically dominant and mechanically dominant mechanisms. The total MRR during copper CMP was determined by summing those two contributions. The chemically dominant mechanism attributed the material removal during copper CMP to the removal of the protective material formed on the surface of copper and to the chemical dissolution of copper from the surface both at regions occupied and not occupied by the protective material with different rates. The kinetics of the formation of the protective material at the millisecond scale were studied through electrochemical experiments and theoretical analysis where a governing equation for the adsorption of benzotriazole (BTA) was constructed and solved. It was found that the grown protective material (CuBTA) during copper CMP was only a fraction of a monolayer partly occupying the surface of a wafer. This was because the time allowed for the adsorption of BTA on the surface of copper was limited by the time between consecutive asperity and copper interactions, which was only of the order of one millisecond. The formation and the removal of the protective material were assumed to be balanced during CMP, yielding a constant chemically dominant MRR. The removal of the protective material by abrasion with abrasive particles was investigated by in situ electrochemical measurement during polishing. The removal efficiency of a pad asperity where abrasive particles are embedded was evaluated from the measurements and was compared with the theoretical analysis. It showed a good agreement and suggested that the copper during CMP is mostly deformed elastically by the abrasive particles. The influence of the concentration of copper ions on the kinetics of the formation of the protective material was also investigated using potential-step chronoamperometry using two types of copper microelectrode, namely a three dimensional and a planar electrode. The amount of copper ion may easily build up to a level that exceeds the solubility product of Cu(II)BTA2. Under these conditions, Cu(II)BTA2 can nucleate, consuming the protective material formed on the surface of copper. This phenomenon is highly undesirable as it increases the dissolution rates at the regions where the protective material is removed, worsening the topography after copper CMP. The mechanically dominant MRR was determined from the volume of a wafer that is plastically deformed by indentation of abrasives that are squeezed between pad asperities and the wafer. The shear stress induced in copper by the force applied on an abrasive is lower than the ideal shear strength of copper, which is the relevant property for plasticity at this length scale. However, the crystallographic defects in the copper crystal may reduce the hardness of the material, allowing the material to be plastically deformed. Especially the roughness of the surface induced by chemical additives in the slurry greatly reduces the resistance to plastic deformation of copper. Because of the localized spatial distribution of those crystallographic defects the plastic deformation occurs only locally. Also, only a part of the plastically deformed material will be detached from the surface, contributing to the MRR. While applying this mechanism, the discrepancy of the MRR behavior with varying size and concentration of abrasives between the prediction and the experimental observations was resolved by proposing a new mechanism that determines the number of abrasives participating in the abrasion of the material. The transport mechanisms of abrasive particles toward a wafer and the electrostatic interactions between abrasives were considered to affect the number of abrasive particles deposited on the surface of a wafer. If the deposition of abrasives on the surface of a wafer is limited by the diffusion of abrasives, the MRR decreases with the size of the abrasives. In contrast, the MRR increases with the size of abrasives if the deposition of the abrasives is limited by the jamming limit of the deposited abrasives at the surface of the wafer. Also, micrometer sized abrasives increases the MRR when the size is increased because the deposition of abrasives is limited by the interception mechanism of the abrasives. The proposed model successfully captured the synergies between chemical and mechanical aspects and quantitatively predicted the MRR during copper CMP. In the future, the model will be applied to predict the pattern dependent variability of topography of a wafer after CMP. The proposed model quantitatively predicts the local MRR of copper. Along with a robust model for dielectric and barrier materials, the model can predict the topography after CMP, contributing to the optimization of the CMP process.

Advances in Chemical Mechanical Planarization (CMP)

Advances in Chemical Mechanical Planarization (CMP) PDF Author: Babu Suryadevara
Publisher: Woodhead Publishing
ISBN: 0128218193
Category : Technology & Engineering
Languages : en
Pages : 650

Book Description
Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D. Reviews the most relevant techniques and processes for CMP of dielectric and metal films Includes chapters devoted to CMP for current and emerging materials Addresses consumables and process control for improved CMP, including post-CMP

Chemical Mechanical Planarization of Microelectronic Materials

Chemical Mechanical Planarization of Microelectronic Materials PDF Author: Joseph M. Steigerwald
Publisher: John Wiley & Sons
ISBN: 3527617752
Category : Science
Languages : en
Pages : 337

Book Description
Chemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now. Chemical Mechanical Planarization of Microelectronic Materials provides engineers and scientists working in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP. Authors Steigerwald, Murarka, and Gutmann-all leading CMP pioneers-provide a historical overview of CMP, explain the various chemical and mechanical concepts involved, describe CMP materials and processes, review the latest scientific data on CMP worldwide, and offer examples of its uses in the microelectronics industry. They provide detailed coverage of the CMP of various materials used in the making of microcircuitry: tungsten, aluminum, copper, polysilicon, and various dielectric materials, including polymers. The concluding chapter describes post-CMP cleaning techniques, and most chapters feature problem sets to assist readers in developing a more practical understanding of CMP. The only comprehensive reference to one of the fastest growing integrated circuit manufacturing technologies, Chemical Mechanical Planarization of Microelectronic Materials is an important resource for research scientists and engineers working in the microelectronics industry. An indispensable resource for scientists and engineers working in the microelectronics industry Chemical Mechanical Planarization of Microelectronic Materials is the only comprehensive single-source reference to one of the fastest growing integrated circuit manufacturing technologies. It provides engineers and scientists who work in the microelectronics industry with unified coverage of both the fundamental mechanisms and engineering applications of CMP, including: * The history of CMP * Chemical and mechanical underpinnings of CMP * CMP materials and processes * Applications of CMP in the microelectronics industry * The CMP of tungsten, aluminum, copper, polysilicon, and various dielectrics, including polymers used in integrated circuit fabrication * Post-CMP cleaning techniques * Chapter-end problem sets are also included to assist readers in developing a practical understanding of CMP.

Chemical Oxidation Applications for Industrial Wastewaters

Chemical Oxidation Applications for Industrial Wastewaters PDF Author: Olcay Tunay
Publisher: IWA Publishing
ISBN: 1843393077
Category : Science
Languages : en
Pages : 361

Book Description
This book covers the most recent scientific and technological developments (state-of-the-art) in the field of chemical oxidation processes applicable for the efficient treatment of biologically-difficult-to-degrade, toxic and/or recalcitrant effluents originating from different manufacturing processes. It is a comprehensive review of process and pollution profiles as well as conventional, advanced and emerging treatment processes & technologies developed for the most relevant and pollution (wet processing)-intensive industrial sectors. It addresses chemical/photochemical oxidative treatment processes, case-specific treatability problems of major industrial sectors, emerging (novel) as well as pilot/full-scale applications, process integration, treatment system design & sizing criteria (figure-of-merits), cost evaluation and success stories in the application of chemical oxidative treatment processes. Chemical Oxidation Applications for Industrial Wastewaters is an essential reference for lecturers, researchers, industrial and environmental engineers and practitioners working in the field of environmental science and engineering. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/CHEMICALOXIDATIONAPPLICATIONSFORINDUSTRIALWASTEWATERS Authors: Professor Olcay Tünay, Professor Isik Kabdasli, Associate Professor Idil Arslan-Alaton and Assistant Professor Tugba Ölmez-Hanci, Environmental Engineering Department, Istanbul Technical University, Turkey.

Chemical-Mechanical Planarization of Semiconductor Materials

Chemical-Mechanical Planarization of Semiconductor Materials PDF Author: M.R. Oliver
Publisher: Springer Science & Business Media
ISBN: 9783540431817
Category : Technology & Engineering
Languages : en
Pages : 444

Book Description
This book contains a comprehensive review of CMP (Chemical-Mechanical Planarization) technology, one of the most exciting areas in the field of semiconductor technology. It contains detailed discussions of all aspects of the technology, for both dielectrics and metals. The state of polishing models and their relation to experimental results are covered. Polishing tools and consumables are also covered. The leading edge issues of damascene and new dielectrics as well as slurryless technology are discussed.

Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies

Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies PDF Author: Shijie Wang
Publisher: Springer
ISBN: 3319510916
Category : Technology & Engineering
Languages : en
Pages : 549

Book Description
This collection offers new research findings, innovations, and industrial technological developments in extractive metallurgy, energy and environment, and materials processing. Technical topics included in the book are thermodynamics and kinetics of metallurgical reactions, electrochemical processing of materials, plasma processing of materials, composite materials, ionic liquids, thermal energy storage, energy efficient and environmental cleaner technologies and process modeling. These topics are of interest not only to traditional base ferrous and non-ferrous metal industrial processes but also to new and upcoming technologies, and they play important roles in industrial growth and economy worldwide.

The Craft and Science of Coffee

The Craft and Science of Coffee PDF Author: Britta Folmer
Publisher: Academic Press
ISBN: 0128035587
Category : Technology & Engineering
Languages : en
Pages : 558

Book Description
The Craft and Science of Coffee follows the coffee plant from its origins in East Africa to its current role as a global product that influences millions of lives though sustainable development, economics, and consumer desire. For most, coffee is a beloved beverage. However, for some it is also an object of scientifically study, and for others it is approached as a craft, both building on skills and experience. By combining the research and insights of the scientific community and expertise of the crafts people, this unique book brings readers into a sustained and inclusive conversation, one where academic and industrial thought leaders, coffee farmers, and baristas are quoted, each informing and enriching each other. This unusual approach guides the reader on a journey from coffee farmer to roaster, market analyst to barista, in a style that is both rigorous and experience based, universally relevant and personally engaging. From on-farming processes to consumer benefits, the reader is given a deeper appreciation and understanding of coffee's complexity and is invited to form their own educated opinions on the ever changing situation, including potential routes to further shape the coffee future in a responsible manner. Presents a novel synthesis of coffee research and real-world experience that aids understanding, appreciation, and potential action Includes contributions from a multitude of experts who address complex subjects with a conversational approach Provides expert discourse on the coffee calue chain, from agricultural and production practices, sustainability, post-harvest processing, and quality aspects to the economic analysis of the consumer value proposition Engages with the key challenges of future coffee production and potential solutions

Wastewater Characteristics, Treatment and Disposal

Wastewater Characteristics, Treatment and Disposal PDF Author: Marcos Von Sperling
Publisher: IWA Publishing
ISBN: 1843391619
Category : Science
Languages : en
Pages : 305

Book Description
Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations for the topics that are analysed in more detail in the other books of the series. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilisation Ponds; Volume 4: Anaerobic Reactors; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal

Postharvest Handling

Postharvest Handling PDF Author: Nigel H. Banks
Publisher: Academic Press
ISBN: 0080920780
Category : Technology & Engineering
Languages : en
Pages : 637

Book Description
Consideration of the interactions between decisions made at one point in the supply chain and its effects on the subsequent stages is the core concept of a systems approach. Postharvest Handling is unique in its application of this systems approach to the handling of fruits and vegetables, exploring multiple aspects of this important process through chapters written by experts from a variety of backgrounds. Newly updated and revised, this second edition includes coverage of the logistics of fresh produce from multiple perspectives, postharvest handing under varying weather conditions, quality control, changes in consumer eating habits and other factors key to successful postharvest handling. The ideal book for understanding the economic as well as physical impacts of postharvest handling decisions. Key Features: *Features contributions from leading experts providing a variety of perspectives *Updated with 12 new chapters *Focuses on application-based information for practical implementation *System approach is unique in the handling of fruits and vegetables

Handbook of Semiconductor Manufacturing Technology

Handbook of Semiconductor Manufacturing Technology PDF Author: Yoshio Nishi
Publisher: CRC Press
ISBN: 1351829823
Category : Technology & Engineering
Languages : en
Pages : 3276

Book Description
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.