Physical Layer Network Coding Using Lattice Codes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Physical Layer Network Coding Using Lattice Codes PDF full book. Access full book title Physical Layer Network Coding Using Lattice Codes by William Liu. Download full books in PDF and EPUB format.

Physical Layer Network Coding Using Lattice Codes

Physical Layer Network Coding Using Lattice Codes PDF Author: William Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Physical Layer Network Coding Using Lattice Codes

Physical Layer Network Coding Using Lattice Codes PDF Author: William Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


An Algebraic Approach to Physical-layer Network Coding

An Algebraic Approach to Physical-layer Network Coding PDF Author: Chen Feng
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Wireless Physical Layer Network Coding

Wireless Physical Layer Network Coding PDF Author: Jan Sykora
Publisher: Cambridge University Press
ISBN: 1108652875
Category : Technology & Engineering
Languages : en
Pages : 338

Book Description
Discover a fresh approach for designing more efficient and cooperative wireless communications networks with this systematic guide. Covering everything from fundamental theory to current research topics, leading researchers describe a new, network-aware coding strategy that exploits the signal interactions that occur in dense wireless networks directly at the waveform level. Using an easy-to-follow, layered structure, this unique text begins with a gentle introduction for those new to the subject, before moving on to explain key information-theoretic principles and establish a consistent framework for wireless physical layer network coding (WPNC) strategies. It provides a detailed treatment of Network Coded Modulation, covers a range of WPNC techniques such as Noisy Network Coding, Compute and Forward, and Hierarchical Decode and Forward, and explains how WPNC can be applied to parametric fading channels, frequency selective channels, and complex stochastic networks. This is essential reading whether you are a researcher, graduate student, or professional engineer.

Channel Estimation for Physical Layer Network Coding Systems

Channel Estimation for Physical Layer Network Coding Systems PDF Author: Feifei Gao
Publisher: Springer
ISBN: 3319116681
Category : Computers
Languages : en
Pages : 85

Book Description
This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performance of the channel estimation strategy and optimal structure of training sequences for each scenario. Besides the analysis of channel estimation strategies, the book also points out the necessity of revisiting other signal processing issues for the PLNC system. Channel Estimation of Physical Layer Network Coding Systems is a valuable resource for researchers and professionals working in wireless communications and networks. Advanced-level students studying computer science and electrical engineering will also find the content helpful.

A Primer on Physical-Layer Network Coding

A Primer on Physical-Layer Network Coding PDF Author: Soung Liew
Publisher: Springer Nature
ISBN: 3031792696
Category : Computers
Languages : en
Pages : 202

Book Description
The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader to gain a deeper appreciation of the various nuances of wireless communications and networking by focusing on problems arising from the study of PNC. Specifically, we introduce the tools and techniques needed to solve problems in PNC, and many of these tools and techniques are drawn from the more general disciplines of signal processing, communications, and networking: PNC is used as a pivot to learn about the fundamentals of signal processing techniques and wireless communications in general. We feel that such a problem-centric approach will give the reader a more in-depth understanding of these disciplines and allow him/her to see first-hand how the techniques of these disciplines can be applied to solve real research problems. As a primer, this book does not cover many advanced materials related to PNC. PNC is an active research field and many new results will no doubt be forthcoming in the near future. We believe that this book will provide a good contextual framework for the interpretation of these advanced results should the reader decide to probe further into the field of PNC.

Design and Implementation of Physical Layer Network Coding Protocols

Design and Implementation of Physical Layer Network Coding Protocols PDF Author: Dumezie K. Maduike
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
There has recently been growing interest in using physical layer network coding techniques to facilitate information transfer in wireless relay networks. The physical layer network coding technique takes advantage of the additive nature of wireless signals by allowing two terminals to transmit simultaneously to the relay node. This technique has several performance benefits, such as improving utilization and throughput of wireless channels and reducing delay. In this thesis, we present an algorithm for joint decoding of two unsynchronized transmitters to a modulo-2 sum of their transmitted messages. We address the problems that arise when the boundaries of the signals do not align with each other and when their phases are not identical. Our approach uses a state-based Viterbi decoding scheme that takes into account the timing offsets between the interfering signals. As a future research plan, we plan to utilize software-defined radios (SDRs) as a testbed to show the practicality of our approach and to verify its performance. Our simulation studies show that the decoder performs well with the only degrading factor being the noise level in the channel.

Lattice Coding for Signals and Networks

Lattice Coding for Signals and Networks PDF Author: Ram Zamir
Publisher: Cambridge University Press
ISBN: 1139991590
Category : Technology & Engineering
Languages : en
Pages : 459

Book Description
Unifying information theory and digital communication through the language of lattice codes, this book provides a detailed overview for students, researchers and industry practitioners. It covers classical work by leading researchers in the field of lattice codes and complementary work on dithered quantization and infinite constellations, and then introduces the more recent results on 'algebraic binning' for side-information problems, and linear/lattice codes for networks. It shows how high dimensional lattice codes can close the gap to the optimal information theoretic solution, including the characterisation of error exponents. The solutions presented are based on lattice codes, and are therefore close to practical implementations, with many advanced setups and techniques, such as shaping, entropy-coding, side-information and multi-terminal systems. Moreover, some of the network setups shown demonstrate how lattice codes are potentially more efficient than traditional random-coding solutions, for instance when generalising the framework to Gaussian networks.

Number Theory Meets Wireless Communications

Number Theory Meets Wireless Communications PDF Author: Victor Beresnevich
Publisher: Springer Nature
ISBN: 3030613038
Category : Technology & Engineering
Languages : en
Pages : 281

Book Description
This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.

Physical-layer Network Coding in Multi-way Relay Channels

Physical-layer Network Coding in Multi-way Relay Channels PDF Author: Hao Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
"Physical-layer network coding (PNC) is an attractive approach to increasing the network throughput by exploiting the broadcast nature of wireless channels. This thesis focuses on the application of PNC in a class of wireless networks known as multi-way relay channels (MRWC), where multiple users share information through a single relay. The primary objective of the thesis is to develop new uplink and downlink schemes for PNC in MWRC, with the main focus on signal detection and power allocation. First, we propose a novel signal detection scheme for PNC in MWRC from the perspective of sequential multi-user detection. The extraction of the network codes from the superimposed user signals at the relay node is formulated as an under-determined linear system. To solve this problem with low decoding complexity, the proposed method combines successive interference cancellation (SIC) with Babai estimation for regularized integer least squares (ILS). We develop a power allocation scheme to enhance the performance of both SIC and ILS steps, and discuss an optimal user pairing strategy based on the average decoding error probability. The performance of the proposed method improves the relay's capability of extracting network codes from multiple superimposed user signals, as demonstrated by the numerical results. Next, we address the design of power allocation schemes for PNC in downlink MWRC. The power allocation is formulated as a constrained optimization problem, where the aim is to maximize the probability of successfully decoding a chain of network codes, so-called success probability, under a total power constraint when using Babai estimation for signal detection. Three aggregate measures of success probability are considered over the participating user terminals, i.e., arithmetic mean, geometric mean, and maximin, and the solutions are obtained based on the concavity of the related problems. Results demonstrate the effectiveness of the proposed schemes in improving the success probability in the reception of a chain of network codes. Finally, we propose a new power allocation scheme based on the success probability of SIC detection for PNC in uplink MWRC. We develop a generalized expression for the closed-form success probability of the SIC detection at the relay in the case of pulse-amplitude modulation (PAM). A constraint optimization is formulated over this probability subject to the transmit power constraints at the user terminals. We develop an evolutionary particle swarm optimization (PSO) algorithm to solve the problem, whose cost function is relatively complex and not necessarily concave. Results show that the proposed method can improve the quality of network code extraction at the relay"--

Iterative Decoding and Detection for Physical Layer Network Coding

Iterative Decoding and Detection for Physical Layer Network Coding PDF Author: Alaa Abdulameer Saeed Al-Rubaie
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description