Physical and Economic Optimization of Hydraulic Fracturing

Physical and Economic Optimization of Hydraulic Fracturing PDF Author: Matteo Marongiu Porcu
Publisher:
ISBN:
Category : Gas wells
Languages : en
Pages : 236

Book Description


Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations

Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations PDF Author: Ahmed Alzahabi
Publisher: CRC Press
ISBN: 1351618229
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry’s ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.

Essentials of Hydraulic Fracturing

Essentials of Hydraulic Fracturing PDF Author: Ralph W. Veatch
Publisher: Pennwell Books
ISBN: 9781593703578
Category : Hydraulic fracturing
Languages : en
Pages : 0

Book Description
Hydraulic fracturing was first developed in the United States during the 1940s and has since spread internationally. A proven technology that is reaching deeper and tighter formations, hydraulic fracturing now delivers hydrocarbons from fields previously considered economically unviable. Essentials of Hydraulic Fracturing focuses on consolidating the fundamental basics of fracturing technology with advances in extended horizontal wellbores and fracturing applications. It provides the essentials required to understand fracturing behavior and offers advice for applying that knowledge to fracturing treatment design and application. Essentials of Hydraulic Fracturingis a long-awaited text for petroleum engineering students, industry-wide hydraulic fracturing training courses or seminars, and practicing fracturing treatment engineers. Features include: Understanding of fracture propagation geometry and fracture conductivity and how it affects treatment results A focus on safety and environmental prudence Economic optimization of fracturing treatments Fracturing fluid system and propping agent performance Important considerations in designing the fracture treatment for both vertical and horizontal wellbores Algorithms and examples pertinent to treatment design and analysis Pre- and post-fracturing approaches and diagnostics for evaluating treatment performance Hydraulic fracturing model construction and applicability Comparative design examples Construction of spreadsheet calculations key to treatment designs

Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity PDF Author: Mengting Li
Publisher: Cuvillier Verlag
ISBN: 3736989342
Category : Technology & Engineering
Languages : en
Pages : 208

Book Description
Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

Optimazation of hydraulic fracturing in tight gas reservoirs with alternative fluid

Optimazation of hydraulic fracturing in tight gas reservoirs with alternative fluid PDF Author: Faisal Mehmood
Publisher: Cuvillier Verlag
ISBN: 3736964722
Category : Technology & Engineering
Languages : en
Pages : 160

Book Description
Due to the finite nature of petroleum resources and depletion of conventional reservoirs, the exploitation of unconventional resources has been a key to meeting world energy needs. Natural gas, a cleaner fossil fuel compared to oil and coal, has an increasing role in the energy mix. It is expected that the peak global natural gas production will remain between 3.7-6.1 trillion m3 per year between 2019 and 2060. Therefore, addressing the technical challenges posed by reservoir exploitation technologies in an environmentally responsible manner is critical for efficient energy production and energy secure of the world.

Hydraulic Fracturing in Unconventional Reservoirs

Hydraulic Fracturing in Unconventional Reservoirs PDF Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
ISBN: 0128176660
Category : Technology & Engineering
Languages : en
Pages : 632

Book Description
Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today’s newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. Helps readers understand drilling and production technology and operations in shale gas through real-field examples Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference Presents the latest operations and applications in all facets of fracturing

Hydraulic Fracturing

Hydraulic Fracturing PDF Author: Michael Berry Smith
Publisher: CRC Press
ISBN: 1466566922
Category : Science
Languages : en
Pages : 793

Book Description
Hydraulic Fracturing effectively busts the myths associated with hydraulic fracturing. It explains how to properly engineer and optimize a hydraulically fractured well by selecting the right materials, evaluating the economic benefits of the project, and ensuring the safety and success of the people, environment, and equipment. From data estimation

Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization

Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization PDF Author: Jiacheng Wang (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Hydraulic fracturing brings economic unconventional reservoir developments, and multi-cluster completion designs result in complex hydraulic fracture geometries. Therefore, accurate yet efficient modeling of the propagation of multiple non-planar hydraulic fractures is desired to study the mechanisms of hydraulic fracture propagation and optimize field completion designs. In this research, a novel hydraulic fracture model is developed to simulate the propagation of multiple hydraulic fractures with proppant transport in layered and naturally fractured reservoirs. The simplified three-dimensional displacement discontinuity method (S3D DDM) is enhanced to compute the hydraulic fracture deformation and propagation with analytical fracture height growth and vertical width variation. Using a single row of DDM elements, the enhanced S3D DDM hydraulic fracture model computes the fully 3D geometries with a similar computational intensity to a 2D model. Then an Eulerian-Lagrangian proppant transport model is developed, where the slurry flow rate and pressure are solved within the Eulerian regime, and the movement of solid proppant particles is solved within the Lagrangian regime. The adaptive proppant gridding scheme in the model allows a smaller grid size at the earlier fracturing stage for higher resolution and a larger grid size at the later fracturing stage for higher efficiency. Besides the physical model, an optimization module that utilizes advanced optimization algorithms such as genetic algorithm (GA) and pattern search algorithm (PSA) is proposed to automatically optimize the completion designs according to the preset targets. Numerical results show that hydraulic fracture propagation is under the combined influence of the in-situ stress, pumping schedule, natural fractures, and cluster placement. Hence, numerical simulation is needed to predict complex hydraulic fracture geometries under various geologic and completion settings. The complex hydraulic fracture geometries, together with fracturing fluid and proppant properties, also affect proppant placement. Moreover, the stress contrast at layer interfaces can cause proppant bridging and form barriers on the proppant transport path. The optimized completion designs increase effective hydraulic and propped areas, but they vary depending on the optimization targets. The developed hydraulic fracture model provides insights into the hydraulic fracturing process and benefits unconventional reservoir development

Hydraulic Fracturing

Hydraulic Fracturing PDF Author: George C. Howard
Publisher: Society of Petroleum Engineers
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 228

Book Description


Hydraulic Fracturing Optimization

Hydraulic Fracturing Optimization PDF Author: Andreas Michael
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Hydraulic fracturing is a reservoir stimulation technique used in the petroleum industry since 1947. High pressure fluid composed mainly of water generates cracks near the wellbore improving the surrounding permeability and enhancing the flow of oil and gas to the surface. Advances in hydraulic fracturing coupled with developments in horizontal drilling, have unlocked vast quantities of unconventional resources, previously believed impossible to be produced. Fracture creation induces perturbations in the nearby in-situ stress regime suppressing the initiation and propagation of other fractures. Neighboring fractures are affected by this stress shadow effect, causing them to grow dissimilarly and they receive unequal portions of the injected fluid. Numerical simulation models have shown that non-uniform perforation cluster distributions with interior fractures closer to the exterior ones can balance out these stress shadow effects, promoting more homogeneous multiple fracture growth compared to uniform perforation cluster distributions. In this work, laboratory-scale tests on three perforation configurations are performed on transparent specimens using distinctly colored fracturing fluids such that fracture growth can be observed. A normal faulting stress regime is replicated with the introduction of an overburden load in a confined space. The results have shown that uniform perforation spacing configurations yields higher degree of fracture growth homogeneity, as maximum spacing minimizes stress shadow effects, compared to moving the middle perforation closer to the toe, or heel of the horizontal well. The experiments also showed a proclivity to form one dominant fracture. Time delay, neglected in most theoretical modelling studies, between fracture initiations is found to be a key parameter and is believed to be one of the major factors promoting this dominant fracture tendency along with wellbore pressure gradients. Moreover, in several cases, the injected bypassed perforation(s) to generate fracture(s) downstream. Finally, the compressibility of the fracturing fluid triggered somewhat unexpected transient pressure behavior. The understanding of the stress shadow effects and what influences them could lead to optimization of hydraulic fracturing treatment design in terms of productivity and cost. Therefore, achieving more homogeneous multiple fracture growth patterns can be pivotal on the economic feasibility of several stimulation treatments.