Photovoltaic Devices Using Photosynthetic Protein Complexes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photovoltaic Devices Using Photosynthetic Protein Complexes PDF full book. Access full book title Photovoltaic Devices Using Photosynthetic Protein Complexes by Rupa Das. Download full books in PDF and EPUB format.

Photovoltaic Devices Using Photosynthetic Protein Complexes

Photovoltaic Devices Using Photosynthetic Protein Complexes PDF Author: Rupa Das
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
Photosynthetic proteins have been used as an active material in design of organic solar cells. Traditional organic solar cells have the limitation of not being able to absorb light in the visible-NIR region of the solar spectrum. This region corresponds to over 70% power of the total solar radiation. Using molecular proteins obtained from nature these limitations can be overcome. Biological photosynthetic complexes contain reaction centers with a quantum yield of>95% and a bandgap of less than l.leV allowing absorption in the 600-11 00nm visible-NIR range. Two types of photosynthetic complexes are employed to demonstrate the generality of the solid state integration technique to make solar cells. The simplest photosynthetic complex used is a bacterial reaction center (RC), isolated from the purple bacterium R. sphaeroides. The other protein being used is Photosystem I (PSI), a much larger complex, which is isolated from spinach chloroplasts. Electronic integration of devices is achieved by depositing organic semiconducting protective layer over a self-assembled monolayer of photosynthetic reaction centers oriented via an engineered metal-affinity polyhistidine tag. Various analytical and spectroscopic techniques have been used to examine solution spectrum and solid state device characteristics. Reasonable efficiencies have been obtained which demonstrates applicability of such techniques. The efficiency obtained is higher than a wet cell made using same proteins. The next immediate goal is to optimize processing conditions and therefore improve efficiency to reach levels comparable traditional organic solar cells.

Photovoltaic Devices Using Photosynthetic Protein Complexes

Photovoltaic Devices Using Photosynthetic Protein Complexes PDF Author: Rupa Das
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
Photosynthetic proteins have been used as an active material in design of organic solar cells. Traditional organic solar cells have the limitation of not being able to absorb light in the visible-NIR region of the solar spectrum. This region corresponds to over 70% power of the total solar radiation. Using molecular proteins obtained from nature these limitations can be overcome. Biological photosynthetic complexes contain reaction centers with a quantum yield of>95% and a bandgap of less than l.leV allowing absorption in the 600-11 00nm visible-NIR range. Two types of photosynthetic complexes are employed to demonstrate the generality of the solid state integration technique to make solar cells. The simplest photosynthetic complex used is a bacterial reaction center (RC), isolated from the purple bacterium R. sphaeroides. The other protein being used is Photosystem I (PSI), a much larger complex, which is isolated from spinach chloroplasts. Electronic integration of devices is achieved by depositing organic semiconducting protective layer over a self-assembled monolayer of photosynthetic reaction centers oriented via an engineered metal-affinity polyhistidine tag. Various analytical and spectroscopic techniques have been used to examine solution spectrum and solid state device characteristics. Reasonable efficiencies have been obtained which demonstrates applicability of such techniques. The efficiency obtained is higher than a wet cell made using same proteins. The next immediate goal is to optimize processing conditions and therefore improve efficiency to reach levels comparable traditional organic solar cells.

Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes

Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes PDF Author: Sai Kishore Ravi
Publisher: Springer Nature
ISBN: 9811563330
Category : Technology & Engineering
Languages : en
Pages : 179

Book Description
This book chronicles a few approaches to constructing biohybrid devices using photosynthetic protein complexes. Can the abundantly available solar energy be tapped to meet our rising energy demands using green and cheap active materials? Exploring nature’s own tiny solar factories, the photosynthetic proteins could hold the key. Photosynthetic pigment-protein complexes found in plants and certain types of bacteria transduce sunlight into biologically useful forms of energy through a photochemical charge separation that has a 100% quantum efficiency. Getting the photoproteins to perform this efficient energy conversion reaction in a semi-artificial setup is central to developing biohybrid solar technologies, a promising green alternative to today’s photovoltaics. This book looks into the existing challenges and opportunities in the field of biohybrid photovoltaics and provides a few prospective methods of enhancing the photocurrent and photovoltage in these devices. The book targets the readership of students, academics, and industrial practitioners who are interested in alternative solar technologies.

Photosynthetic Protein-Based Photovoltaics

Photosynthetic Protein-Based Photovoltaics PDF Author: Swee Ching Tan
Publisher: CRC Press
ISBN: 9781032401782
Category :
Languages : en
Pages : 0

Book Description
Photosynthetic protein complexes have an overall quantum yield close to 100%. Photovoltaic devices using protein complexes can provide an economical alternative to existing solar cells. This book explains how to build and improve the efficiency of protein solar energy conversion devices.

Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only

Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only PDF Author: Michael Seibert
Publisher:
ISBN:
Category : Photosynthesis
Languages : en
Pages : 4

Book Description
Spectral hole-burning (SHB) and single photosynthetic complex spectroscopy (SPCS) will be used to study the excitonic structure and excitation energy transfer (EET) processes of several photosynthetic protein complexes at low temperatures. The combination of SHB on bulk samples and SPCS is a powerful frequency domain approach for obtaining data that will address a number of issues that are key to understanding excitonic structure and energy transfer dynamics. The long-term goal is to reach a better understanding of the ultrafast solar energy driven primary events of photosynthesis as they occur in higher plants, cyanobacteria, purple bacteria, and green algae. A better understanding of the EET and charge separation (CS) processes taking place in photosynthetic complexes is of great interest, since photosynthetic complexes might offer attractive architectures for a future generation of circuitry in which proteins are crystallized.

Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only

Spectroscopic Studies of Photosynthetic Systems and Their Application in Photovoltaic Devices - Equipment Only PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Spectral hole-burning (SHB) and single photosynthetic complex spectroscopy (SPCS) will be used to study the excitonic structure and excitation energy transfer (EET) processes of several photosynthetic protein complexes at low temperatures. The combination of SHB on bulk samples and SPCS is a powerful frequency domain approach for obtaining data that will address a number of issues that are key to understanding excitonic structure and energy transfer dynamics. The long-term goal is to reach a better understanding of the ultrafast solar energy driven primary events of photosynthesis as they occur in higher plants, cyanobacteria, purple bacteria, and green algae. A better understanding of the EET and charge separation (CS) processes taking place in photosynthetic complexes is of great interest, since photosynthetic complexes might offer attractive architectures for a future generation of circuitry in which proteins are crystallized.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578

Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Integration of Photosynthetic Pigment-protein Complexes in Dye Sensitized Solar Cells Towards Plasmonic-enhanced Biophotovoltaics

Integration of Photosynthetic Pigment-protein Complexes in Dye Sensitized Solar Cells Towards Plasmonic-enhanced Biophotovoltaics PDF Author: Yiqun Yang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the tremendous global energy crisis. Development of three generation of solar cells has promoted the best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to develop cost-effective biophotovoltaics that combines natural photosynthetic systems into artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing sensitizer to interface with semiconductive TiO2 and plasmonic nanoparticles in DSSCs. The goal of this research is to understand the fundamental photon capture, energy transfer and charge separation processes of photosynthetic pigment-protein complexes along with improving biophotovoltaic performance based on this model system through tailoring engineering of TiO2 nanostructures, attaching of the complexes, and incorporating plasmonic enhancement. The first study reports a novel approach to linking the spectroscopic properties of nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). The aggregation allowed reorganization between individual trimers which dramatically increased the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being electrostatically immobilized on amine-functionalized TiO2 surface. The motivation of the second study is to get insights into the plasmonic effects on the nature of energy/charge transfer processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. Three types of core-shell (metal@TiO2) plasmonic nanoparticles (PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC platform built on a unique open three-dimensional (3D) photoanode consisting of TiO2 nanotrees. Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the LHCII/TiO2 interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific artificial materials is a promising approach for high-performance biosolar cells. Furthermore, the final study reveals the mechanism of hot electron injection by employing a mesoporous core-shell (Au@TiO2) network as a bridge material on a micro-gap electrode to conduct electricity under illumination and comparing the photoconductance to the photovolatic properties of the same material as photoanodes in DSSCs. Based on the correlation of the enhancements in photoconductance and photovoltaics, the contribution of hot electrons was deconvoluted from the plasmonic near-field effects.

Photosynthetic Protein-Based Photovoltaics

Photosynthetic Protein-Based Photovoltaics PDF Author: Swee Ching Tan
Publisher: CRC Press
ISBN: 1498724906
Category : Medical
Languages : en
Pages : 255

Book Description
Ever since the discovery of the photoelectric effect, researchers have been trying to improve the efficiency of converting sunlight into electricity through photovoltaic devices. Photosynthetic organisms provide clues for harvesting sunlight and storing the energy in chemical forms. This book offers a concise overview of the fundamental concepts of photosynthesis and the emerging photovoltaic technologies, casting light on the symbiotic relation between these spheres of science. Although there are many books about the fundamentals of photosynthesis and the various aspects of the photosynthetic processes, this is the first volume to focus on the prospects of studying the photosynthetic proteins, understanding and applying their properties to design prospective solar energy conversion devices that are sustainable and efficient. All in all, the book aims to bring together the present know-how on organic photovoltaics and dye-sensitized solar cells with that of the emerging bio-photovoltaics and the underlying physics of photosynthesis to foster a more eclectic research that would converge towards a sustainable energy technology for the future. The book mainly serves as a bridge to connect biochemists, who study photosynthetic proteins, and physicists and engineers who design and develop photovoltaic devices. Scientists, engineers and students in the fields of photosynthetic research and solar energy research can use this book as a ready reference. Key selling features: Covers both methods and bio-based materials needed to build bio-based photovoltaics Focuses on both techniques and applications Summarizes the advantages and limitations of various techniques Contributors from multiple disciplines integrate the knowledge of photosynthetic proteins and the physics/engineering of photovoltaic devices. Includes adaptive designs and techniques used in other types of solar cells to for the design of protein-based PVs

Photosynthetic Proteins Photovoltaic Devices

Photosynthetic Proteins Photovoltaic Devices PDF Author: Swee Ching Tan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


New Frontiers in Multiscale Modelling of Advanced Materials

New Frontiers in Multiscale Modelling of Advanced Materials PDF Author: Simone Taioli
Publisher: Frontiers Media SA
ISBN: 2889197557
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 93

Book Description
Atomistic simulations, based on ab-initio and semi-empirical approaches, are nowadays widespread in many areas of physics, chemistry and, more recently, biology. Improved algorithms and increased computational power widened the areas of application of these computational methods to extended materials of technological interest, in particular allowing unprecedented access to the first-principles investigation of their electronic, optical, thermodynamical and mechanical properties, even where experiments are not available. However, for a big impact on the society, this rapidly growing field of computational approaches to materials science has to face the unfavourable scaling with the system size, and to beat the time-scale bottleneck. Indeed, many phenomena, such as crystal growth or protein folding for example, occur in a space/time scale which is normally out of reach of present simulations. Multi-scale approaches try to combine different scale algorithms along with matching procedures in order to bridge the gap between first-principles and continuum-level simulations. This Research Topic aims at the description of recent advances and applications in these two emerging fields of ab-inito and multi-scale materials modelling for both ground and excited states. A variety of theoretical and computational techniques are included along with the application of these methods to systems at increasing level of complexity, from nano to micro. Crossing the borders between several computational, theoretical and experimental techniques, this Research Topic aims to be of interest to a broad community, including experimental and theoretical physicists, chemists and engineers interested in materials research in a broad sense.