Photosynthetic Protein-Based Photovoltaics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photosynthetic Protein-Based Photovoltaics PDF full book. Access full book title Photosynthetic Protein-Based Photovoltaics by Swee Ching Tan. Download full books in PDF and EPUB format.

Photosynthetic Protein-Based Photovoltaics

Photosynthetic Protein-Based Photovoltaics PDF Author: Swee Ching Tan
Publisher: CRC Press
ISBN: 1498724906
Category : Medical
Languages : en
Pages : 255

Book Description
Ever since the discovery of the photoelectric effect, researchers have been trying to improve the efficiency of converting sunlight into electricity through photovoltaic devices. Photosynthetic organisms provide clues for harvesting sunlight and storing the energy in chemical forms. This book offers a concise overview of the fundamental concepts of photosynthesis and the emerging photovoltaic technologies, casting light on the symbiotic relation between these spheres of science. Although there are many books about the fundamentals of photosynthesis and the various aspects of the photosynthetic processes, this is the first volume to focus on the prospects of studying the photosynthetic proteins, understanding and applying their properties to design prospective solar energy conversion devices that are sustainable and efficient. All in all, the book aims to bring together the present know-how on organic photovoltaics and dye-sensitized solar cells with that of the emerging bio-photovoltaics and the underlying physics of photosynthesis to foster a more eclectic research that would converge towards a sustainable energy technology for the future. The book mainly serves as a bridge to connect biochemists, who study photosynthetic proteins, and physicists and engineers who design and develop photovoltaic devices. Scientists, engineers and students in the fields of photosynthetic research and solar energy research can use this book as a ready reference. Key selling features: Covers both methods and bio-based materials needed to build bio-based photovoltaics Focuses on both techniques and applications Summarizes the advantages and limitations of various techniques Contributors from multiple disciplines integrate the knowledge of photosynthetic proteins and the physics/engineering of photovoltaic devices. Includes adaptive designs and techniques used in other types of solar cells to for the design of protein-based PVs

Photosynthetic Protein-Based Photovoltaics

Photosynthetic Protein-Based Photovoltaics PDF Author: Swee Ching Tan
Publisher: CRC Press
ISBN: 1498724906
Category : Medical
Languages : en
Pages : 255

Book Description
Ever since the discovery of the photoelectric effect, researchers have been trying to improve the efficiency of converting sunlight into electricity through photovoltaic devices. Photosynthetic organisms provide clues for harvesting sunlight and storing the energy in chemical forms. This book offers a concise overview of the fundamental concepts of photosynthesis and the emerging photovoltaic technologies, casting light on the symbiotic relation between these spheres of science. Although there are many books about the fundamentals of photosynthesis and the various aspects of the photosynthetic processes, this is the first volume to focus on the prospects of studying the photosynthetic proteins, understanding and applying their properties to design prospective solar energy conversion devices that are sustainable and efficient. All in all, the book aims to bring together the present know-how on organic photovoltaics and dye-sensitized solar cells with that of the emerging bio-photovoltaics and the underlying physics of photosynthesis to foster a more eclectic research that would converge towards a sustainable energy technology for the future. The book mainly serves as a bridge to connect biochemists, who study photosynthetic proteins, and physicists and engineers who design and develop photovoltaic devices. Scientists, engineers and students in the fields of photosynthetic research and solar energy research can use this book as a ready reference. Key selling features: Covers both methods and bio-based materials needed to build bio-based photovoltaics Focuses on both techniques and applications Summarizes the advantages and limitations of various techniques Contributors from multiple disciplines integrate the knowledge of photosynthetic proteins and the physics/engineering of photovoltaic devices. Includes adaptive designs and techniques used in other types of solar cells to for the design of protein-based PVs

Photosynthetic Protein-Based Photovoltaics

Photosynthetic Protein-Based Photovoltaics PDF Author: Swee Ching Tan
Publisher: CRC Press
ISBN: 1351646559
Category : Medical
Languages : en
Pages : 218

Book Description
Ever since the discovery of the photoelectric effect, researchers have been trying to improve the efficiency of converting sunlight into electricity through photovoltaic devices. Photosynthetic organisms provide clues for harvesting sunlight and storing the energy in chemical forms. This book offers a concise overview of the fundamental concepts of photosynthesis and the emerging photovoltaic technologies, casting light on the symbiotic relation between these spheres of science. Although there are many books about the fundamentals of photosynthesis and the various aspects of the photosynthetic processes, this is the first volume to focus on the prospects of studying the photosynthetic proteins, understanding and applying their properties to design prospective solar energy conversion devices that are sustainable and efficient. All in all, the book aims to bring together the present know-how on organic photovoltaics and dye-sensitized solar cells with that of the emerging bio-photovoltaics and the underlying physics of photosynthesis to foster a more eclectic research that would converge towards a sustainable energy technology for the future. The book mainly serves as a bridge to connect biochemists, who study photosynthetic proteins, and physicists and engineers who design and develop photovoltaic devices. Scientists, engineers and students in the fields of photosynthetic research and solar energy research can use this book as a ready reference. Key selling features: Covers both methods and bio-based materials needed to build bio-based photovoltaics Focuses on both techniques and applications Summarizes the advantages and limitations of various techniques Contributors from multiple disciplines integrate the knowledge of photosynthetic proteins and the physics/engineering of photovoltaic devices. Includes adaptive designs and techniques used in other types of solar cells to for the design of protein-based PVs

Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes

Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes PDF Author: Sai Kishore Ravi
Publisher: Springer Nature
ISBN: 9811563330
Category : Technology & Engineering
Languages : en
Pages : 179

Book Description
This book chronicles a few approaches to constructing biohybrid devices using photosynthetic protein complexes. Can the abundantly available solar energy be tapped to meet our rising energy demands using green and cheap active materials? Exploring nature’s own tiny solar factories, the photosynthetic proteins could hold the key. Photosynthetic pigment-protein complexes found in plants and certain types of bacteria transduce sunlight into biologically useful forms of energy through a photochemical charge separation that has a 100% quantum efficiency. Getting the photoproteins to perform this efficient energy conversion reaction in a semi-artificial setup is central to developing biohybrid solar technologies, a promising green alternative to today’s photovoltaics. This book looks into the existing challenges and opportunities in the field of biohybrid photovoltaics and provides a few prospective methods of enhancing the photocurrent and photovoltage in these devices. The book targets the readership of students, academics, and industrial practitioners who are interested in alternative solar technologies.

Photovoltaic Devices Using Photosynthetic Protein Complexes

Photovoltaic Devices Using Photosynthetic Protein Complexes PDF Author: Rupa Das
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
Photosynthetic proteins have been used as an active material in design of organic solar cells. Traditional organic solar cells have the limitation of not being able to absorb light in the visible-NIR region of the solar spectrum. This region corresponds to over 70% power of the total solar radiation. Using molecular proteins obtained from nature these limitations can be overcome. Biological photosynthetic complexes contain reaction centers with a quantum yield of>95% and a bandgap of less than l.leV allowing absorption in the 600-11 00nm visible-NIR range. Two types of photosynthetic complexes are employed to demonstrate the generality of the solid state integration technique to make solar cells. The simplest photosynthetic complex used is a bacterial reaction center (RC), isolated from the purple bacterium R. sphaeroides. The other protein being used is Photosystem I (PSI), a much larger complex, which is isolated from spinach chloroplasts. Electronic integration of devices is achieved by depositing organic semiconducting protective layer over a self-assembled monolayer of photosynthetic reaction centers oriented via an engineered metal-affinity polyhistidine tag. Various analytical and spectroscopic techniques have been used to examine solution spectrum and solid state device characteristics. Reasonable efficiencies have been obtained which demonstrates applicability of such techniques. The efficiency obtained is higher than a wet cell made using same proteins. The next immediate goal is to optimize processing conditions and therefore improve efficiency to reach levels comparable traditional organic solar cells.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578

Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Integration of Photosynthetic Pigment-protein Complexes in Dye Sensitized Solar Cells Towards Plasmonic-enhanced Biophotovoltaics

Integration of Photosynthetic Pigment-protein Complexes in Dye Sensitized Solar Cells Towards Plasmonic-enhanced Biophotovoltaics PDF Author: Yiqun Yang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the tremendous global energy crisis. Development of three generation of solar cells has promoted the best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to develop cost-effective biophotovoltaics that combines natural photosynthetic systems into artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing sensitizer to interface with semiconductive TiO2 and plasmonic nanoparticles in DSSCs. The goal of this research is to understand the fundamental photon capture, energy transfer and charge separation processes of photosynthetic pigment-protein complexes along with improving biophotovoltaic performance based on this model system through tailoring engineering of TiO2 nanostructures, attaching of the complexes, and incorporating plasmonic enhancement. The first study reports a novel approach to linking the spectroscopic properties of nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). The aggregation allowed reorganization between individual trimers which dramatically increased the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being electrostatically immobilized on amine-functionalized TiO2 surface. The motivation of the second study is to get insights into the plasmonic effects on the nature of energy/charge transfer processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. Three types of core-shell (metal@TiO2) plasmonic nanoparticles (PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC platform built on a unique open three-dimensional (3D) photoanode consisting of TiO2 nanotrees. Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the LHCII/TiO2 interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific artificial materials is a promising approach for high-performance biosolar cells. Furthermore, the final study reveals the mechanism of hot electron injection by employing a mesoporous core-shell (Au@TiO2) network as a bridge material on a micro-gap electrode to conduct electricity under illumination and comparing the photoconductance to the photovolatic properties of the same material as photoanodes in DSSCs. Based on the correlation of the enhancements in photoconductance and photovoltaics, the contribution of hot electrons was deconvoluted from the plasmonic near-field effects.

Bioelectrochemical Systems

Bioelectrochemical Systems PDF Author: Prasun Kumar
Publisher: Springer Nature
ISBN: 9811568723
Category : Technology & Engineering
Languages : en
Pages : 333

Book Description
This book is the first in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. In this first volume, established research professionals explain the underlying principles and processes of BESs, providing a thorough introduction to these systems before proceeding to address the roles of cathode catalysts and biocatalysts, biofilms, heterotrophic denitrification, and nanotechnology approaches. This volume forms a sound foundation for understanding the potential industrial applications of this technology, which include in particular the generation of high-value chemicals and energy using organic wastes. These applications are the focus of the second volume, where readers will find up-to-date information on microbial fuel cells and the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.

Fuels from Solar Energy

Fuels from Solar Energy PDF Author: Joel C. Goldman
Publisher:
ISBN:
Category : Algae culture
Languages : en
Pages : 136

Book Description


Photosynthetic Proteins Photovoltaic Devices

Photosynthetic Proteins Photovoltaic Devices PDF Author: Swee Ching Tan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Biophotovoltaics: Converting Sunlight to Electricity with Photosynthetic Protein Complexes

Biophotovoltaics: Converting Sunlight to Electricity with Photosynthetic Protein Complexes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description