Photocatalytic Conversion of Methane and Reduction of CO2 with H2O PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photocatalytic Conversion of Methane and Reduction of CO2 with H2O PDF full book. Access full book title Photocatalytic Conversion of Methane and Reduction of CO2 with H2O by Xiang Yu. Download full books in PDF and EPUB format.

Photocatalytic Conversion of Methane and Reduction of CO2 with H2O

Photocatalytic Conversion of Methane and Reduction of CO2 with H2O PDF Author: Xiang Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Photocatalysis is one of the key technologies for clean energy and environmental applications. The number of applications based on photocatalysis has increased dramatically for the past two decades. Photocatalytic activation of C-H bonds is an emerging field. Methane is a promising source of energy with a huge reserve and is considered to be one of the alternatives to non-renewable petroleum resources because it can be converted to valuable hydrocarbon feedstocks and hydrogen through appropriate reactions. However, due to its high stability, high energy is usually consumed for its conversion, which remains a problem to be solved. Methane conversion and reaction mechanism occurring on metal-heteropolyacid-titania nanocomposites were investigated in Chapters 3 and 4. Oxidation of methane has been carried out for more than a century. Since oxygen is a very reactive molecule, methane can react very rapidly with molecular oxygen and is prone to total oxidation till CO2. Therefore, it is difficult to obtain a desired product with high yield and high selectivity. We report here direct and selective photocatalytic highly-selective oxidation of methane to carbon monoxide under ambient conditions. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. The reaction is consistent with the Mars-Van Krevelen type sequence and involves formation of the surface methoxy-carbonates as intermediates and zinc oxidation-reduction cycling. In the past few decades, extensive research has focused on the direct conversion of methane to alcohols or higher hydrocarbons. The current processes of converting methane to alcohols or olefins are complex and expensive, because they require an intermediate step of reforming methane to syngas. Although the direct conversion of methane to more valuable products has significant environmental and potential commercial value, there is no commercial scale process available. We uncovered highly selective (>90%) quantitative photochemical direct conversion of methane to ethane at ambient temperature over silver-heteropolyacid-titania nanocomposites. The ethane yield from methane reaches 9 % on the optimized materials. High quantum efficiency, high selectivity and significant yield of ethane combined with excellent stability are major advantages of methane quantitative synthesis from methane using the photochemical looping approach. The rise in atmospheric carbon dioxide and the depletion of fossil fuel reserves have raised serious concerns about the subsequent impact of CO2 on the global climate and future energy supply. The use of abundant solar energy to convert carbon dioxide into fuel, such as carbon monoxide, methane or methanol, solves both problems simultaneously and provides a convenient method of energy storage. Chapter 5 addresses a new efficient catalyst for selective CO2 to CO conversion. The zinc containing phosphotungstic acid-titania nanocomposites exhibited exceptional high activity reaching 50 μmol CO/g·h and selectivity (73%) in the CO2 photocatalytic reduction to CO in the presence of water. The in-situ IR experiments suggest that reaction involves zinc bicarbonates containing hydroxyl groups. The decomposition of these zinc bicarbonate species under irradiation leads to the selective production of carbon monoxide and oxygen. In photocatalytic reactions, the difference in catalyst morphology usually has a significant effect on the photocatalytic performance. Chapter 6 studied the effect of monoclinic bismuth vanadate (BiVO4) crystals with controlled ratio of {010} and {110} facets for photocatalytic reduction of CO2 by H2O. The reaction under irradiation is significantly enhanced by selective photo-deposition of Cu and Co co-catalysts over different facets providing Z-scheme charge flow.

Photocatalytic Conversion of Methane and Reduction of CO2 with H2O

Photocatalytic Conversion of Methane and Reduction of CO2 with H2O PDF Author: Xiang Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Photocatalysis is one of the key technologies for clean energy and environmental applications. The number of applications based on photocatalysis has increased dramatically for the past two decades. Photocatalytic activation of C-H bonds is an emerging field. Methane is a promising source of energy with a huge reserve and is considered to be one of the alternatives to non-renewable petroleum resources because it can be converted to valuable hydrocarbon feedstocks and hydrogen through appropriate reactions. However, due to its high stability, high energy is usually consumed for its conversion, which remains a problem to be solved. Methane conversion and reaction mechanism occurring on metal-heteropolyacid-titania nanocomposites were investigated in Chapters 3 and 4. Oxidation of methane has been carried out for more than a century. Since oxygen is a very reactive molecule, methane can react very rapidly with molecular oxygen and is prone to total oxidation till CO2. Therefore, it is difficult to obtain a desired product with high yield and high selectivity. We report here direct and selective photocatalytic highly-selective oxidation of methane to carbon monoxide under ambient conditions. The composite catalysts on the basis of zinc, tungstophosphoric acid and titania exhibit exceptional performance in this reaction, high carbon monoxide selectivity and quantum efficiency of 7.1% at 362 nm. The reaction is consistent with the Mars-Van Krevelen type sequence and involves formation of the surface methoxy-carbonates as intermediates and zinc oxidation-reduction cycling. In the past few decades, extensive research has focused on the direct conversion of methane to alcohols or higher hydrocarbons. The current processes of converting methane to alcohols or olefins are complex and expensive, because they require an intermediate step of reforming methane to syngas. Although the direct conversion of methane to more valuable products has significant environmental and potential commercial value, there is no commercial scale process available. We uncovered highly selective (>90%) quantitative photochemical direct conversion of methane to ethane at ambient temperature over silver-heteropolyacid-titania nanocomposites. The ethane yield from methane reaches 9 % on the optimized materials. High quantum efficiency, high selectivity and significant yield of ethane combined with excellent stability are major advantages of methane quantitative synthesis from methane using the photochemical looping approach. The rise in atmospheric carbon dioxide and the depletion of fossil fuel reserves have raised serious concerns about the subsequent impact of CO2 on the global climate and future energy supply. The use of abundant solar energy to convert carbon dioxide into fuel, such as carbon monoxide, methane or methanol, solves both problems simultaneously and provides a convenient method of energy storage. Chapter 5 addresses a new efficient catalyst for selective CO2 to CO conversion. The zinc containing phosphotungstic acid-titania nanocomposites exhibited exceptional high activity reaching 50 μmol CO/g·h and selectivity (73%) in the CO2 photocatalytic reduction to CO in the presence of water. The in-situ IR experiments suggest that reaction involves zinc bicarbonates containing hydroxyl groups. The decomposition of these zinc bicarbonate species under irradiation leads to the selective production of carbon monoxide and oxygen. In photocatalytic reactions, the difference in catalyst morphology usually has a significant effect on the photocatalytic performance. Chapter 6 studied the effect of monoclinic bismuth vanadate (BiVO4) crystals with controlled ratio of {010} and {110} facets for photocatalytic reduction of CO2 by H2O. The reaction under irradiation is significantly enhanced by selective photo-deposition of Cu and Co co-catalysts over different facets providing Z-scheme charge flow.

CO2 Conversion and Utilization

CO2 Conversion and Utilization PDF Author: Chunshan Song
Publisher: ACS Symposium
ISBN: 9780841237476
Category : Science
Languages : en
Pages : 0

Book Description
This book focuses on the chemistry and processes for conversion and utilization of carbon dioxide. Topics include CO 2 utilization, its conversion to industrial chemicals and fuels, its coversion via synthesis gas, and new catalysts and chemical processes for conversion.

New and Future Developments in Catalysis

New and Future Developments in Catalysis PDF Author: Naveed Ahmed
Publisher: Elsevier Inc. Chapters
ISBN: 0128082399
Category : Science
Languages : en
Pages : 30

Book Description


Solar-to-Chemical Conversion

Solar-to-Chemical Conversion PDF Author: Hongqi Sun
Publisher: John Wiley & Sons
ISBN: 3527825088
Category : Science
Languages : en
Pages : 480

Book Description
This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.

Photocatalytic Conversion of CO2 with H2O Over Pt/TiO2 Nanoparticles

Photocatalytic Conversion of CO2 with H2O Over Pt/TiO2 Nanoparticles PDF Author: Yan Wang
Publisher:
ISBN: 9781321238907
Category : Carbon dioxide
Languages : en
Pages : 95

Book Description


The Chemistry of CO2 and TiO2

The Chemistry of CO2 and TiO2 PDF Author: Svatopluk Civiš
Publisher: Springer
ISBN: 3030240320
Category : Science
Languages : en
Pages : 100

Book Description
This book provides a comprehensive overview of the chemistry of CO2 in relation to surface interactions and photocatalytic transformation by UV radiation. The first part deals with the modelling of an anatase surface, its interaction with CO2, and the spontaneous exchange of oxygen atoms between the gas and solid phases. The book then naturally transitions to the photocatalytic reduction of CO2, achieved by adding UV radiation and traces of water to the experimental system, to produce methane and CO. This photocatalytic reduction is explained in detail and the implications for planetary chemistry (specifically concerning Mars), as well as Earth’s atmospheric chemistry and global warming, are discussed.

Photo- and Electro-Catalytic Processes

Photo- and Electro-Catalytic Processes PDF Author: Jianmin Ma
Publisher: John Wiley & Sons
ISBN: 352734859X
Category : Technology & Engineering
Languages : en
Pages : 596

Book Description
Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.

Conversion of Carbon Dioxide into Hydrocarbons Vol. 1 Catalysis

Conversion of Carbon Dioxide into Hydrocarbons Vol. 1 Catalysis PDF Author: Inamuddin
Publisher: Springer Nature
ISBN: 3030286223
Category : Science
Languages : en
Pages : 216

Book Description
This book presents the catalytic conversion of carbon dioxide into various hydrocarbons and other products using photochemical, electrochemical and thermo-chemical processes. Products include formate, formic acid, alcohols, lower and higher hydrocarbons, gases such as hydrogen, carbon monoxide and syngas.

Advances in CO2 Capture, Sequestration, and Conversion

Advances in CO2 Capture, Sequestration, and Conversion PDF Author: Fangming Jin
Publisher: ACS Symposium
ISBN: 9780841230880
Category : Science
Languages : en
Pages : 0

Book Description
"Distributed in print by Oxford University Press."

Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies

Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies PDF Author: Yun Zheng
Publisher: CRC Press
ISBN: 1351597302
Category : Science
Languages : en
Pages : 274

Book Description
Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization. This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed. This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.