Author: E. Yu Tonkov
Publisher: CRC Press
ISBN: 1420037609
Category : Science
Languages : en
Pages : 390
Book Description
As laboratories replace heavy hydraulic presses and bulky high-pressure chambers with miniature diamond anvils, traditional heaters with laser heating, and continue to improve methods of shock compression, there has been considerable new data obtained from the high-pressure, high-temperature modification of pure elements. The dense metallic modification of elements shows the potential for achieving superconductivity akin to theoretical predictions. Phase Transformations of Elements Under High Pressure contains the latest theoretical and experimental information on nearly 100 elements, including first-and second-phase transitions, melting lines, crystal structures of stable and metastable phases, stability of polymorphic modifications, and other useful properties and data. It emphasizes features such as changes in the liquid state, amorphization, and metallization, and provides temperature-pressure diagrams for every element. The book also describes the transitions of polymeric forms of fullerene, crystal modifications of elements stable under high pressures, and provides data that confirms their superconducting and magnetic properties. This handbook will be a lasting reference for scientists in a broad range of disciplines, including solid-state physics, chemistry, crystallography, mineralogy, and materials science.
Phase Transformations of Elements Under High Pressure
Author: E. Yu Tonkov
Publisher: CRC Press
ISBN: 1420037609
Category : Science
Languages : en
Pages : 390
Book Description
As laboratories replace heavy hydraulic presses and bulky high-pressure chambers with miniature diamond anvils, traditional heaters with laser heating, and continue to improve methods of shock compression, there has been considerable new data obtained from the high-pressure, high-temperature modification of pure elements. The dense metallic modification of elements shows the potential for achieving superconductivity akin to theoretical predictions. Phase Transformations of Elements Under High Pressure contains the latest theoretical and experimental information on nearly 100 elements, including first-and second-phase transitions, melting lines, crystal structures of stable and metastable phases, stability of polymorphic modifications, and other useful properties and data. It emphasizes features such as changes in the liquid state, amorphization, and metallization, and provides temperature-pressure diagrams for every element. The book also describes the transitions of polymeric forms of fullerene, crystal modifications of elements stable under high pressures, and provides data that confirms their superconducting and magnetic properties. This handbook will be a lasting reference for scientists in a broad range of disciplines, including solid-state physics, chemistry, crystallography, mineralogy, and materials science.
Publisher: CRC Press
ISBN: 1420037609
Category : Science
Languages : en
Pages : 390
Book Description
As laboratories replace heavy hydraulic presses and bulky high-pressure chambers with miniature diamond anvils, traditional heaters with laser heating, and continue to improve methods of shock compression, there has been considerable new data obtained from the high-pressure, high-temperature modification of pure elements. The dense metallic modification of elements shows the potential for achieving superconductivity akin to theoretical predictions. Phase Transformations of Elements Under High Pressure contains the latest theoretical and experimental information on nearly 100 elements, including first-and second-phase transitions, melting lines, crystal structures of stable and metastable phases, stability of polymorphic modifications, and other useful properties and data. It emphasizes features such as changes in the liquid state, amorphization, and metallization, and provides temperature-pressure diagrams for every element. The book also describes the transitions of polymeric forms of fullerene, crystal modifications of elements stable under high pressures, and provides data that confirms their superconducting and magnetic properties. This handbook will be a lasting reference for scientists in a broad range of disciplines, including solid-state physics, chemistry, crystallography, mineralogy, and materials science.
Phase Transitions in Solids Under High Pressure
Author: Vladimir Davydovich Blank
Publisher: CRC Press
ISBN: 1466594241
Category : Science
Languages : en
Pages : 455
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in Solids under High Pressure discusses the relationships of phase transformations in solids under high pressure, the mechanism of these transformations, crystal geometry, the effect of deformation, the conditions of formation, and preservation of the high-pressure phases under normal pressure. The book begins with an introduction that describes the relationship of the thermodynamics of phase transformations and the kinetics of the transformations. This is followed by a chapter explaining the equipment and mostly original procedures for investigating phase transformation in solids under high hydrostatic and quasi-hydrostatic pressures. The book covers phase transformations under high pressure in a wide temperature range in the elements carbon, silicon, germanium, titanium, zirconium, iron, gallium, and cerium as well as in titanium- and iron-based alloys and AIBVII, AIIBVI, and AIIIBV compounds. In addition, the book examines the kinetics of phase transformations in iron-based alloys in isobaric–isothermal conditions. The authors present results for phase transformations in deformation under high pressure, describe several non-trivial effects associated with phase transformations under high pressure, and analyze the kinetics and hysteresis of high-temperature and low-temperature phase transformations. They conclude by describing the role of investigations under high pressure for determining general relationships governing phase transformations in solids.
Publisher: CRC Press
ISBN: 1466594241
Category : Science
Languages : en
Pages : 455
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in Solids under High Pressure discusses the relationships of phase transformations in solids under high pressure, the mechanism of these transformations, crystal geometry, the effect of deformation, the conditions of formation, and preservation of the high-pressure phases under normal pressure. The book begins with an introduction that describes the relationship of the thermodynamics of phase transformations and the kinetics of the transformations. This is followed by a chapter explaining the equipment and mostly original procedures for investigating phase transformation in solids under high hydrostatic and quasi-hydrostatic pressures. The book covers phase transformations under high pressure in a wide temperature range in the elements carbon, silicon, germanium, titanium, zirconium, iron, gallium, and cerium as well as in titanium- and iron-based alloys and AIBVII, AIIBVI, and AIIIBV compounds. In addition, the book examines the kinetics of phase transformations in iron-based alloys in isobaric–isothermal conditions. The authors present results for phase transformations in deformation under high pressure, describe several non-trivial effects associated with phase transformations under high pressure, and analyze the kinetics and hysteresis of high-temperature and low-temperature phase transformations. They conclude by describing the role of investigations under high pressure for determining general relationships governing phase transformations in solids.
High Pressure Phase Transformations
Author: Evgeniĭ I︠U︡rʹevich Tonkov
Publisher: Gordon & Breach Science Publishers
ISBN: 9782881247613
Category : Science
Languages : en
Pages : 404
Book Description
Publisher: Gordon & Breach Science Publishers
ISBN: 9782881247613
Category : Science
Languages : en
Pages : 404
Book Description
Phase Transitions in Solids Under High Pressure
Author: Vladimir Davydovich Blank
Publisher: CRC Press
ISBN: 146659425X
Category : Science
Languages : en
Pages : 451
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in
Publisher: CRC Press
ISBN: 146659425X
Category : Science
Languages : en
Pages : 451
Book Description
The use of high-pressure techniques has become popular for studying the nature of substances and phenomena occurring in them, especially as a means of obtaining new materials (synthesis under high pressure) and processing known materials (hydroextrusion). A product of many years of research by the authors and their colleagues, Phase Transitions in
Science and Technology of High Pressure
Author: Murli H. Manghnani
Publisher: Universities Press
ISBN: 9788173713385
Category : Science
Languages : en
Pages : 650
Book Description
These books presents a wide spectrum of research and development activities in the field of High Pressure Science and Technology. These book provide comprehensive and interdisciplinary descriptions of recent research accomplishments in the biological, chemical, Earth, materrals, physical, physiological and related sciences.
Publisher: Universities Press
ISBN: 9788173713385
Category : Science
Languages : en
Pages : 650
Book Description
These books presents a wide spectrum of research and development activities in the field of High Pressure Science and Technology. These book provide comprehensive and interdisciplinary descriptions of recent research accomplishments in the biological, chemical, Earth, materrals, physical, physiological and related sciences.
High-Pressure Crystallography
Author: Elena Boldyreva
Publisher: Springer Science & Business Media
ISBN: 9048192579
Category : Science
Languages : en
Pages : 603
Book Description
This unique book is devoted to the theme of crystallographic studies at high pressure. It places emphasis on the phenomena characteristic to the compressed state of matter, as well as experimental and theoretical techniques, used to study these phenomena.
Publisher: Springer Science & Business Media
ISBN: 9048192579
Category : Science
Languages : en
Pages : 603
Book Description
This unique book is devoted to the theme of crystallographic studies at high pressure. It places emphasis on the phenomena characteristic to the compressed state of matter, as well as experimental and theoretical techniques, used to study these phenomena.
Compounds and Alloys Under High Pressure
Author: E.Yu Tonkov
Publisher: Taylor & Francis
ISBN: 1351459104
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
This is the first book to classify and systematize the available data on the behavior of binary alloys under high pressure. Despite the fact that there is a strong correlation between temperature-composition (T-C) phase diagrams at normal pressure and three- dimensional temperature-composition-pressure (T-C-P) diagrams, many material scientists seldom refer to the (T-C-P) diagrams, just as many high pressure researchers often ignore the data obtained at normal pressure. This book aims to bridge the gap between data obtained at high pressure and that obtained at normal pressure. The most recent research covers not only elements and stoichiometric compounds, but also binary, ternary, and multicomponent alloys, and so this book covers an extended range of substances. The properties of 890 binary systems and a further 1153 pseudobinary and ternary systems are summarized, and accompanied by an extensive bibliography. The data includes information on the solubility of components in solid solutions, melting, and first- and second-order phase transformations in alloys and stoichiometric compounds.
Publisher: Taylor & Francis
ISBN: 1351459104
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
This is the first book to classify and systematize the available data on the behavior of binary alloys under high pressure. Despite the fact that there is a strong correlation between temperature-composition (T-C) phase diagrams at normal pressure and three- dimensional temperature-composition-pressure (T-C-P) diagrams, many material scientists seldom refer to the (T-C-P) diagrams, just as many high pressure researchers often ignore the data obtained at normal pressure. This book aims to bridge the gap between data obtained at high pressure and that obtained at normal pressure. The most recent research covers not only elements and stoichiometric compounds, but also binary, ternary, and multicomponent alloys, and so this book covers an extended range of substances. The properties of 890 binary systems and a further 1153 pseudobinary and ternary systems are summarized, and accompanied by an extensive bibliography. The data includes information on the solubility of components in solid solutions, melting, and first- and second-order phase transformations in alloys and stoichiometric compounds.
Statics and Dynamics of Alloy Phase Transformations
Author: Patrice E.A. Turchi
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.
High Pressure Phase Transformations Handbook 3
Author: E. Yu Tonkov
Publisher: CRC Press
ISBN: 9782884490177
Category : Science
Languages : en
Pages : 204
Book Description
Publisher: CRC Press
ISBN: 9782884490177
Category : Science
Languages : en
Pages : 204
Book Description
Introduction to Condensed Matter Chemistry
Author: Jihong Yu
Publisher: Elsevier
ISBN: 0443161410
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Introduction to Condensed Matter Chemistry offers a general view of chemistry from the perspective of condensed matter chemistry, analyzing and contrasting chemical reactions in a more realistic setting than traditional thinking. Readers will also find discussions on the goals and major scientific questions in condensed matter chemistry and the molecular engineering of functional condensed matter. Processes and products of chemical reactions should not be determined solely by the structure and composition of these basic species but also by the complex and possibly multilevel structured physical and chemical environment, together referred to as their condensed state. Relevant matters in condensed state should be the main bodies of chemical reactions, which is applicable not only to solids and liquids but also to gas molecules as reactions among gas molecules can take place only in the presence of catalysts in specific condensed states or after their state transition under extreme reaction conditions. This book provides new insights on the liquid state chemistry, definitions, aspects, and interactions, summarizing fundamentals of main chemical reactions from a new perspective. - Helps to establish the new field of Condensed Matter Chemistry - Highlights the molecular engineering of functional condensed matter - Focuses on both liquid and solid state chemistry
Publisher: Elsevier
ISBN: 0443161410
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
Introduction to Condensed Matter Chemistry offers a general view of chemistry from the perspective of condensed matter chemistry, analyzing and contrasting chemical reactions in a more realistic setting than traditional thinking. Readers will also find discussions on the goals and major scientific questions in condensed matter chemistry and the molecular engineering of functional condensed matter. Processes and products of chemical reactions should not be determined solely by the structure and composition of these basic species but also by the complex and possibly multilevel structured physical and chemical environment, together referred to as their condensed state. Relevant matters in condensed state should be the main bodies of chemical reactions, which is applicable not only to solids and liquids but also to gas molecules as reactions among gas molecules can take place only in the presence of catalysts in specific condensed states or after their state transition under extreme reaction conditions. This book provides new insights on the liquid state chemistry, definitions, aspects, and interactions, summarizing fundamentals of main chemical reactions from a new perspective. - Helps to establish the new field of Condensed Matter Chemistry - Highlights the molecular engineering of functional condensed matter - Focuses on both liquid and solid state chemistry