Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM. PDF full book. Access full book title Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM. by Jingwen Zhu. Download full books in PDF and EPUB format.

Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM.

Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM. PDF Author: Jingwen Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This thesis presents a detailed performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gbit/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-tosignal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.

Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM.

Phase Noise Compensation for Long-haul Coherent Optical Communication Systems Using OFDM. PDF Author: Jingwen Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Long-haul optical transmission systems employing coherent optical orthogonal frequency division multiplexing (CO-OFDM) are sensitive to laser phase noise. This causes a common phase rotation and inter-carrier interference. An effective method to compensate for the phase noise is to insert an RF-pilot tone in the middle of the OFDM signal. This RF-pilot is used to reverse the phase distortion at the receiver. This thesis presents a detailed performance analysis of the RF-pilot phase noise compensation scheme in a simulated 64 Gbit/s CO-OFDM system. The effects of various parameters including laser linewidth, Mach-Zehnder modulator drive power, pilot-tosignal ratio, and fiber launch power are investigated. A comparison with the pilot-aided common phase error compensation method is provided to show the differences in the BER performance with respect to the required overhead.

Adaptive Decision-directed Channel Equalization and Laser Phase Noise Induced Inter-carrier-inteference Mitigation for Coherent Optical Orthogonal Frequency Division Multiplexing Transport Systems

Adaptive Decision-directed Channel Equalization and Laser Phase Noise Induced Inter-carrier-inteference Mitigation for Coherent Optical Orthogonal Frequency Division Multiplexing Transport Systems PDF Author: Mohammad Mousa Pasandi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
"The explosive growth of global Internet traffic has placed tremendous strain on both op-tical networks and optical transmission systems, underscoring the need for not only high-capacity transmission links but also for flexible, reconfigurable, and adaptive networks. Recent progress in complementary metal-oxide-semiconductor (CMOS) technology has facilitated the use of digital signal processing (DSP) in optical communication systems. Blessed with the revival of coherent optical transmission systems, over the past few years, DSP-enabled, software-defined optical transmission (SDOT) systems have led the funda-mental paradigm shift from inflexible optical networks to robust, reconfigurable, plug-and-play optical networks.Recently, coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been intensively investigated as a promising modulation format for realizing coherent transmission systems. Although CO-OFDM has attracted significant interest in the research community, it has yet to leave a tangible impact on the commercial front due to implemen-tation shortcomings, such as excessive overhead, and susceptibility to fibre nonlinearities and frequency/phase noise.This thesis explores DSP-based solutions for CO-OFDM transmission systems, including two key original contributions. The first contribution is a novel adaptive decision-directed channel equalizer (ADDCE) that aims to reduce the required overhead in CO-OFDM transmission systems. ADDCE retrieves an estimation of the phase noise value after an initial decision making stage, by extracting and averaging the phase drift of all OFDM sub-channels, demonstrating zero-overhead phase noise compensation. Moreover, it updates the channel transfer matrix on a symbol-by-symbol basis, thus enabling a reduction in the associated overhead with pilot symbols. The second original contribution of this thesis focuses on the mitigation of the effect of the laser phase noise induced inter-carrier interfer-ence (ICI) in CO-OFDM systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples using linear interpolation between the common-phase-error (CPE) estimates of consecutive OFDM symbols.The performances of the aforementioned DSP equalization schemes are numerically and experimentally studied in reduced-guard-interval dual-polarization CO-OFDM (RGI-DP-CO-OFDM) transmission systems, and are found to demonstrate superior performance over conventional equalizers (CEs). In addition, a computational complexity analysis of the pro-posed equalizers is provided, which confirms a low implementation complexity." --

OFDM for Optical Communications

OFDM for Optical Communications PDF Author: William Shieh
Publisher: Academic Press
ISBN: 0080952062
Category : Technology & Engineering
Languages : en
Pages : 457

Book Description
- The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology - The first book on optical OFDM by the leading pioneers in the field - The only book to cover error correction codes for optical OFDM - Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented - An introduction to signal processing for optical communications - An introduction to optical communication fundamentals for the wireless engineer

Impact of Nonlinearities on Fiber Optic Communications

Impact of Nonlinearities on Fiber Optic Communications PDF Author: Shiva Kumar
Publisher: Springer Science & Business Media
ISBN: 144198139X
Category : Science
Languages : en
Pages : 547

Book Description
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on the system performance. Over the past few years, there has been significant progress in coherent communication systems mainly because of the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments and techniques to mitigate them in electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place with in-depth coverage by the experts of each subtopics. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals, review of literature survey and the recent developments. The reader will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research work without spending space on preliminaries.

Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application

Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application PDF Author: Jianjun Yu
Publisher: Springer Nature
ISBN: 981153098X
Category : Technology & Engineering
Languages : en
Pages : 572

Book Description
This book presents the principles and applications of optical fiber communication based on digital signal processing (DSP) for both single and multi-carrier modulation signals. In the context of single carrier modulation, it describes DSP for linear and nonlinear optical fiber communication systems, discussing all-optical Nyquist modulation signal generation and processing, and how to use probabilistic and geometrical shaping to improve the transmission performance. For multi-carrier modulation, it examines DSP-based OFDM signal generation and detection and presents 4D and high-order modulation formats. Lastly, it demonstrates how to use artificial intelligence in optical fiber communication. As such it is a useful resource for students, researches and engineers in the field of optical fiber communication.

Optical Communication Systems

Optical Communication Systems PDF Author: Andrew Ellis
Publisher: CRC Press
ISBN: 042964826X
Category : Computers
Languages : en
Pages : 285

Book Description
Telecommunications have underpinned social interaction and economic activity since the 19th century and have been increasingly reliant on optical fibers since their initial commercial deployment by BT in 1983. Today, mobile phone networks, data centers, and broadband services that facilitate our entertainment, commerce, and increasingly health provision are built on hidden optical fiber networks. However, recently it emerged that the fiber network is beginning to fill up, leading to the talk of a capacity crunch where the capacity still grows but struggles to keep up with the increasing demand. This book, featuring contributions by the suppliers of widely deployed simulation software and academic authors, illustrates the origins of the limited performance of an optical fiber from the engineering, physics, and information theoretic viewpoints. Solutions are then discussed by pioneers in each of the respective fields, with near-term solutions discussed by industrially based authors, and more speculative high-potential solutions discussed by leading academic groups.

Investigation of Receiver Concepts for Coherent Optical Orthogonal Frequency Division Multiplexing Communication Systems

Investigation of Receiver Concepts for Coherent Optical Orthogonal Frequency Division Multiplexing Communication Systems PDF Author: Kidsanapong Puntsri
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Optical Communications and Networking

Optical Communications and Networking PDF Author: Zhongqi Pan
Publisher: MDPI
ISBN: 3039282581
Category : Technology & Engineering
Languages : en
Pages : 132

Book Description
In the past few decades, the optical communication industry has explored multiple degrees of freedom of the photon, such as time, wavelength, amplitude, phase, polarization, and space, to significantly reduce the cost/bit of data transmission by increasing the capacity per fiber through multiplexing technology and by reducing the size and power through electronic and photonic integration. This book aims to explore the latest advancements in this industry, including the technologies in devices, systems, and network levels with applications from short-reach chip-to-chip interconnections to long-haul backbone communications at the trans-oceanic distance.

High Spectral Density Optical Communication Technologies

High Spectral Density Optical Communication Technologies PDF Author: Masataka Nakazawa
Publisher: Springer Science & Business Media
ISBN: 3642104193
Category : Science
Languages : en
Pages : 337

Book Description
The growth of Internet traf?c in recent years surpassed the prediction of one decade ago. Data stream in individual countries already reached terabit/s level. To cope with the petabit class demands of traf?c in coming years the communication engineers are required to go beyond the incremental improvement of today’s technology. A most promising breakthrough would be the introduction of modulation f- mats enabling higher spectral ef?ciency than that of binary on–off keying scheme, virtually the global standard of ?ber-optic communication systems. In wireless communication systems, techniques of high spectral density modulation have been well developed, but the required techniques in optical frequency domain are much more complicated because of the heavier ?uctuation levels. Therefore the past trials of coherent optical modulation/detection schemes were not successful. However, the addition of high-speed digital signal processing technology is the fundam- tal difference between now and two decades ago, when trials of optical coherent communication systems were investigated very seriously. This approach of digital coherent technology has attracted keen interest among communication specialists, as indicated by the rapid increase in the pioneering presentations at the post-deadline sessions of major international conferences. For example, 32 terabit/s transmission in a ?ber experiment based on this technology was reported in post-deadline session of Optical Fiber Communication Conference (OFC) 2009. The advancement of the digital coherent technologies will inevitably affect the network architecture in terms of the network resource management for the new generation photonic networks, rather than will simply provide with huge transmission capacity.

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks PDF Author: Xiang Zhou
Publisher: John Wiley & Sons
ISBN: 1118714962
Category : Science
Languages : en
Pages : 649

Book Description
Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.