Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 912
Book Description
Nuclear Science Abstracts
Scientific and Technical Aerospace Reports
Nuclear Science Abstracts
Fusion Energy Update
Risø Report
Methods in Nonlinear Plasma Theory
Author: Ronald Davidson
Publisher: Elsevier
ISBN: 0323153380
Category : Science
Languages : en
Pages : 377
Book Description
Methods in Nonlinear Plasma Theory is from lectures given in graduate classes in both University of Maryland and University of California at Berkeley. To be able to understand fully the contents in this book, the reader is assumed to be a graduate student with background of classical physics and linear plasma waves and instabilities. This text is divided into two major parts. Part I deals with the coherent nonlinear phenomena, while Part II discusses the turbulent nonlinear phenomena. Six chapters comprise Part I, where basic equations and methods are described and discussed. Some of these methods are Vlasov-Maxwell equations and Korteweg-de Vries equation. Part II meanwhile has eight chapters that discuss frameworks and theories for weak plasma turbulence. Specifically, the weak turbulence theory is presented as it is applied to electromagnetic wave-particle interactions, nonlinear wave-wave interactions, and nonlinear wave-particle interactions. This book is a useful reference for students and researchers in the study of classical physics and plasma theory.
Publisher: Elsevier
ISBN: 0323153380
Category : Science
Languages : en
Pages : 377
Book Description
Methods in Nonlinear Plasma Theory is from lectures given in graduate classes in both University of Maryland and University of California at Berkeley. To be able to understand fully the contents in this book, the reader is assumed to be a graduate student with background of classical physics and linear plasma waves and instabilities. This text is divided into two major parts. Part I deals with the coherent nonlinear phenomena, while Part II discusses the turbulent nonlinear phenomena. Six chapters comprise Part I, where basic equations and methods are described and discussed. Some of these methods are Vlasov-Maxwell equations and Korteweg-de Vries equation. Part II meanwhile has eight chapters that discuss frameworks and theories for weak plasma turbulence. Specifically, the weak turbulence theory is presented as it is applied to electromagnetic wave-particle interactions, nonlinear wave-wave interactions, and nonlinear wave-particle interactions. This book is a useful reference for students and researchers in the study of classical physics and plasma theory.
Investigations of Electrostatic Ion Waves in a Collisionless Plasma
Author: Poul Michelsen
Publisher:
ISBN:
Category : Ion acoustic waves
Languages : en
Pages : 154
Book Description
Publisher:
ISBN:
Category : Ion acoustic waves
Languages : en
Pages : 154
Book Description
Turbulence in the Solar Wind
Author: Roberto Bruno
Publisher: Springer
ISBN: 3319434403
Category : Science
Languages : en
Pages : 270
Book Description
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Publisher: Springer
ISBN: 3319434403
Category : Science
Languages : en
Pages : 270
Book Description
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Handbook on Plasma Instabilities
Author: Ferdinand F. Cap
Publisher: Academic Press
ISBN: 148327098X
Category : Science
Languages : en
Pages : 575
Book Description
Handbook on Plasma Instabilities, Volume 2 consists of four chapters on plasma instabilities. Chapter 14 discusses the various aspects of microinstabilities. Beam-plasma systems are covered in Chapter 15, while the various stabilization methods are presented in Chapter 16. This book concludes with deliberations on parametric effects in Chapter 17. Other topics discussed include the microinstabilities of a homogeneous unmagnetized plasma; kinetic theory of macroscopic instabilities; basic beam physics; and beam-plasma instabilities. The magnetic field configuration stabilization; macroscopic nonmagnetic stabilization methods; parametric instabilities in homogeneous unmagnetized plasmas; and parametric effects in bounded and inhomogeneous plasmas are also elaborated in this text. This publication is beneficial to students and researchers conducting work on unstable plasma.
Publisher: Academic Press
ISBN: 148327098X
Category : Science
Languages : en
Pages : 575
Book Description
Handbook on Plasma Instabilities, Volume 2 consists of four chapters on plasma instabilities. Chapter 14 discusses the various aspects of microinstabilities. Beam-plasma systems are covered in Chapter 15, while the various stabilization methods are presented in Chapter 16. This book concludes with deliberations on parametric effects in Chapter 17. Other topics discussed include the microinstabilities of a homogeneous unmagnetized plasma; kinetic theory of macroscopic instabilities; basic beam physics; and beam-plasma instabilities. The magnetic field configuration stabilization; macroscopic nonmagnetic stabilization methods; parametric instabilities in homogeneous unmagnetized plasmas; and parametric effects in bounded and inhomogeneous plasmas are also elaborated in this text. This publication is beneficial to students and researchers conducting work on unstable plasma.
Library of Congress Catalog
Author: Library of Congress
Publisher:
ISBN:
Category : Subject catalogs
Languages : en
Pages : 1042
Book Description
Beginning with 1953, entries for Motion pictures and filmstrips, Music and phonorecords form separate parts of the Library of Congress catalogue. Entries for Maps and atlases were issued separately 1953-1955.
Publisher:
ISBN:
Category : Subject catalogs
Languages : en
Pages : 1042
Book Description
Beginning with 1953, entries for Motion pictures and filmstrips, Music and phonorecords form separate parts of the Library of Congress catalogue. Entries for Maps and atlases were issued separately 1953-1955.