Perspectives on Large Linear Colliders PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Perspectives on Large Linear Colliders PDF full book. Access full book title Perspectives on Large Linear Colliders by . Download full books in PDF and EPUB format.

Perspectives on Large Linear Colliders

Perspectives on Large Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs.

Perspectives on Large Linear Colliders

Perspectives on Large Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Three main items in the design of large linear colliders are presented. The first is the interrelation of energy and luminosity requirements. These two items impose severe constraints on the accelerator builder who must design a machine to meet the needs of experimentl high energy physics rather than designing a machine for its own sake. An introduction is also given for linear collider design, concentrating on what goes on at the collision point, for still another constraint comes here from the beam-beam interaction which further restricts the choices available to the accelerator builder. The author also gives his impressions of the state of the technology available for building these kinds of machines within the next decade. The paper concludes with a brief recommendation for how we can all get on with the work faster, and hope to realize these machines sooner by working together. 10 refs., 9 figs.

International Linear Collider (ILC)

International Linear Collider (ILC) PDF Author: Alexey Drutskoy
Publisher: Morgan & Claypool Publishers
ISBN: 1643273264
Category : Science
Languages : en
Pages : 62

Book Description
The International Linear Collider (ILC) is a mega-scale, technically complex project, requiring large financial resources and cooperation of thousands of scientists and engineers from all over the world. Such a big and expensive project has to be discussed publicly, and the planned goals have to be clearly formulated. This book advocates for the demand for the project, motivated by the current situation in particle physics. The natural and most powerful way of obtaining new knowledge in particle physics is to build a new collider with a larger energy. In this approach, the Large Hadron Collider (LHC) was created and is now operating at the world record center of-mass energy of 13 TeV. Although the design of colliders with a larger energy of 50-100 TeV has been discussed, the practical realization of such a project is not possible for another 20-30 years. Of course, many new results are expected from LHC over the next decade. However, we must also think about other opportunities, and in particular, about the construction of more dedicated experiments. There are many potentially promising projects, however, the most obvious possibility to achieve significant progress in particle physics in the near future is the construction of a linear e+e- collider with energies in the range (250-1000) GeV. Such a project, the ILC, is proposed to be built in Kitakami, Japan. This book will discuss why this project is important and which new discoveries can be expected with this collider.

Linear Collider Physics In The New Millennium

Linear Collider Physics In The New Millennium PDF Author: Keisuke Fujii
Publisher: World Scientific
ISBN: 9814482390
Category : Science
Languages : en
Pages : 518

Book Description
The high energy electron-positron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider.

Large Linear Colliders

Large Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This lecture is a status report on work we have been doing at SLAC on studies of large linear colliders (LLC) with energies far beyond those attainable with either the SLC or LEP.

Particle Physics: Perspectives And Opportunities - Report Of The Dpf Committee On Long-term Planning

Particle Physics: Perspectives And Opportunities - Report Of The Dpf Committee On Long-term Planning PDF Author: Robert N Cahn
Publisher: World Scientific
ISBN: 9814549223
Category :
Languages : en
Pages : 318

Book Description
This book is the result of a broad-based and in-depth study of high energy physics commissioned by the Executive Committee of the Division of Particles and Fields of the American Physical Society. This year-long study was initiated in the early 1994, in the wake of the cancellation of the SSC, and is meant to complement the report of the Drell HEPAP subpanel, charged with providing a vision for the future of the field. The DPF study of high energy physics was organized on the basis of the working groups, each led by a number of co-conveners chosen among established leaders in the various subspecialties in the field. These conveners, in turn, organized their working groups by inviting other active workers in the discipline to participate and gathered further input from the community by holding a variety of specialized meetings and workshops. This book contains the final reports of the 11 working groups assembled for the study, along with an extended overview and executive summary by the editors.

Particle Physics Experiments at High Energy Colliders

Particle Physics Experiments at High Energy Colliders PDF Author: John Hauptman
Publisher: John Wiley & Sons
ISBN: 3527408258
Category : Science
Languages : en
Pages : 225

Book Description
Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors.

Experimental Approaches at Linear Colliders

Experimental Approaches at Linear Colliders PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Precision measurements have played a vital role in our understanding of elementary particle physics. Experiments performed using ee− collisions have contributed an essential part. Recently, the precision measurements at LEP and SLC have probed the standard model at the quantum level and severely constrained the mass of the Higgs boson [1]. Coupled with the limits on the Higgs mass from direct searches [2], this enables the mass to be constrained to be in the range 115-205 GeV. Developments in accelerator R and D have matured to the point where one could contemplate construction of a linear collider with initial energy in the 500 GeV range and a credible upgrade path to H"1 TeV. Now is therefore the correct time to critically evaluate the case for such a facility. The Working Group E3, Experimental Approaches at Linear Colliders, was encouraged to make this evaluation. The group was charged with examining critically the physics case for a Linear Collider (LC) of energy of order 1 TeV as well as the cases for higher energy machines, assessing the performance requirements and exploring the viability of several special options. In addition it was asked to identify the critical areas where R and D is required (the complete text of the charge can be found in the Appendix). In order to address this, the group was organized into subgroups, each of which was given a specific task. Three main groups were assigned to the TeV-class Machines, Multi-TeV Machines and Detector Issues. The central activity of our working group was the exploration of TeV class machines, since they are being considered as the next major initiative in high energy physics. We have considered the physics potential of these machines, the special options that could be added to the collider after its initial running, and addressed a number of important questions. Several physics scenarios were suggested in order to benchmark the physics reach of the linear collider and persons were appointed to maintain contacts with the relevant activities in the various Physics Working Groups. Special options considered were precision electroweak studies that could be done by running the collider at and near the Z pole (so called Giga Z running); collisions involving [gamma][gamma], e−e−, or e[gamma] interactions; and positron beam polarization. The following questions were posed in order to focus the discussions: (1) In view of the fact that the luminosity is a function of energy, what are the trade-offs involved in selecting the energy. (2) What is the argument for proceeding with the construction of a Linear collider as soon as possible rather than waiting for data from LHC? (3) In the context of a definite physics scenario, what is a realistic run plan? i.e. How much luminosity at each energy? (4) What should be the initial energy of a linear collider and to what energy should that machine extended?

Review of Linear Colliders in the Framework of Future World Accelerators

Review of Linear Colliders in the Framework of Future World Accelerators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
The HEP communities in three major regions, Asia, Europe and North America, have recently agreed that experimental particle physics in the next twenty years will be greatly enriched if an ee− linear collider were to be available in the TeV c.m. energy range to supplement the opportunities offered by the LHC. This abridged paper of a longer oral presentation at ICHEP 2002 outlines several current design options for such an ee− linear collider, which are presently under intense study by the International Linear Collider Technical Review Committee (ILC-TRC).

Linear Collider Research and Development at SLAC, LBL and LLNL.

Linear Collider Research and Development at SLAC, LBL and LLNL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The study of electron-positron (ee/sup -/) annihilation in storage ring colliders has been very fruitful. It is by now well understood that the optimized cost and size of ee/sup /minus// storage rings scales as E(sub cm/2 due to the need to replace energy lost to synchrotron radiation in the ring bending magnets. Linear colliders, using the beams from linear accelerators, evade this scaling law. The study of e/sup +/e/sup /minus// collisions at TeV energy will require linear colliders. The luminosity requirements for a TeV linear collider are set by the physics. Advanced accelerator research and development at SLAC is focused toward a TeV Linear Collider (TLC) of 0.5--1 TeV in the center of mass, with a luminosity of 1033−−1°sup 34/. The goal is a design for two linacs of less than 3 km each, and requiring less than 100 MW of power each. With a 1 km final focus, the TLC could be fit on Stanford University land (although not entirely within the present SLAC site). The emphasis is on technologies feasible for a proposal to be framed in 1992. Linear collider development work is progressing on three fronts: delivering electrical energy to a beam, delivering a focused high quality beam, and system optimization. Sources of high peak microwave radio frequency (RF) power to drive the high gradient linacs are being developed in collaboration with Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). Beam generation, beam dynamics and final focus work has been done at SLAC and in collaboration with KEK. Both the accelerator physics and the utilization of TeV linear colliders were topics at the 1988 Snowmass Summer Study. 14 refs., 4 figs., 1 tab.

Expanded Studies of Linear Collider Final Focus Systems at the Final Focus Test Beam

Expanded Studies of Linear Collider Final Focus Systems at the Final Focus Test Beam PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Book Description
In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.