Perovskites and Other Framework Structure Crystalline Materials - Part B PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Perovskites and Other Framework Structure Crystalline Materials - Part B PDF full book. Access full book title Perovskites and Other Framework Structure Crystalline Materials - Part B by Pierre Saint-Grégoire. Download full books in PDF and EPUB format.

Perovskites and Other Framework Structure Crystalline Materials - Part B

Perovskites and Other Framework Structure Crystalline Materials - Part B PDF Author: Pierre Saint-Grégoire
Publisher:
ISBN: 9781105836985
Category :
Languages : en
Pages : 0

Book Description
This book (part A and partB, the present one) was written by 76 authors, among best specialists of the field, at the intention of academics, researchers, engineers, graduated and undergraduated students wishing to update their knowledge and understanding of the covered class of materials. It presents perovskites but also other Framework Structure crystalline materials (based on units that share their corners with neighbours). Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. After part A « Fundamental aspects and general properties », we present part B (the present one) « Elaborated materials and applied properties », containing 14 chapters. Examples of elaborated materials belonging to the family of Framework Structure materials are presented (with potential applications), and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among applications we focus on molecules encapsulation, gas adsorption, photovoltaics, typical applications related to ferroelectricity, and memory devices. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals. The volume proposes a reasonable balance between fundamental aspects (part A) and applied properties (part B). It can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject and is presented in a pedagogical way): it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments. It may be used also by undergraduate students who should approach given subjects. This part contains the general index and preface and is completed by numerous figures to illustrate the text.

Perovskites and Other Framework Structure Crystalline Materials - Part B

Perovskites and Other Framework Structure Crystalline Materials - Part B PDF Author: Pierre Saint-Grégoire
Publisher:
ISBN: 9781105836985
Category :
Languages : en
Pages : 0

Book Description
This book (part A and partB, the present one) was written by 76 authors, among best specialists of the field, at the intention of academics, researchers, engineers, graduated and undergraduated students wishing to update their knowledge and understanding of the covered class of materials. It presents perovskites but also other Framework Structure crystalline materials (based on units that share their corners with neighbours). Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. After part A « Fundamental aspects and general properties », we present part B (the present one) « Elaborated materials and applied properties », containing 14 chapters. Examples of elaborated materials belonging to the family of Framework Structure materials are presented (with potential applications), and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among applications we focus on molecules encapsulation, gas adsorption, photovoltaics, typical applications related to ferroelectricity, and memory devices. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals. The volume proposes a reasonable balance between fundamental aspects (part A) and applied properties (part B). It can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject and is presented in a pedagogical way): it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments. It may be used also by undergraduate students who should approach given subjects. This part contains the general index and preface and is completed by numerous figures to illustrate the text.

Perovskites and Other Framework Structure Crystalline Materials

Perovskites and Other Framework Structure Crystalline Materials PDF Author: Pierre Saint-Gregoire
Publisher:
ISBN: 9781008906402
Category :
Languages : en
Pages : 0

Book Description
This book was written by 76 authors, among best specialists of the field, at the intention of academics, researchers, engineers, graduated and undergraduated students wishing to update their knowledge and understanding of the covered class of materials. It contains 26 chapters on different subjects (original research articles, review articles on fundamental aspects and applications).It presents new trends and perspectives on perovskites but also on other Framework Structure crystalline materials.Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. With a crystal structure characterized by octahedra that share their corners, these materials belong to the wider category of « Framework Structure (FWS) materials » the structure of which is based on units (octahedra, tetrahedra, ...) that share some of their corners (or edges) with their neighbours. This particular feature of FWS materials confers to them unique properties. This review volume is constituted of 26 chapters on different aspects, and is divided in two parts,« Fundamental aspects and general properties », and « Elaborated materials and applied properties ». Its main purpose is to attempt to identify the properties common to all members of the vast family of FWS materials, and understand their differences. Besides perovskites, derived compounds as 2D perovskites, Dion-Jacobson, Ruddlesden-Popper, Aurivillius, tungsten-bronzes, and others, are presented, and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles.In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals.

PEROVSKITES AND OTHER FRAMEWORK STRUCTURE CRYSTALLINE MATERIALS

PEROVSKITES AND OTHER FRAMEWORK STRUCTURE CRYSTALLINE MATERIALS PDF Author:
Publisher: Collaborating Academics
ISBN:
Category : Science
Languages : en
Pages : 821

Book Description
Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. With a crystal structure characterized by octahedra that share their corners, these materials belong to the wider category of « Framework Structure (FWS) materials » the structure of which is based on units (octahedra, tetrahedra, …) that share some of their corners (or edges) with their neighbours. This particular feature of FWS materials confers to them unique properties. This review volume is constituted of 26 chapters on different aspects, and is divided in two parts, « Fundamental aspects and general properties », and « Elaborated materials and applied properties ». Its main purpose is to attempt to identify the properties common to all members of the vast family of FWS materials, and understand their differences. Besides perovskites, derived compounds as 2D perovskites, Dion-Jacobson, Ruddlesden-Popper, Aurivillius, tungsten-bronzes, and others, are presented, and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among most recent applications, this volume focuses on applications related with interactions with other molecules, on photovoltaics, and on memories, with a special attention to perovskite solar cells that have certainly attracted the most attention of researchers in recent years, opening extremely promising routes in photovoltaics. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals; it proposes a reasonable balance between experimental and theoretical results, and between fundamental aspects and applied properties. This volume can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject, and is presented in a pedagogical way) : it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments, who will find excellent detailed introductions up to hotsubjects. It may also be used by undergraduate students who should approach given subjects. The volume contains 800 pages written by about 70 authors from different countries, it has an index, and is completed by numerous figures to illustrate the text.

Perovskites and Other Framework Structure Crystalline Materials

Perovskites and Other Framework Structure Crystalline Materials PDF Author: Pierre Saint-Grégoire
Publisher:
ISBN:
Category :
Languages : en
Pages : 822

Book Description
Internet site of the book: http: //perovskitesandotherfws.co-ac.com------------------------------------------------------------------------------Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. With a crystal structure characterized by octahedra that share their corners, these materials belong to the wider category of Framework Structure (FWS) materials the structure of which is based on units (octahedra, tetrahedra, ...) that share some of their corners (or edges) with their neighbours. This particular feature of FWS materials confers to them unique properties. This review volume is constituted of 26 chapters on different aspects, and is divided in two parts, Fundamental aspects and general properties, and Elaborated materials and applied properties . Its main purpose is to attempt to identify the properties common to all members of the vast family of FWS materials, and understand their differences. Besides perovskites, derived compounds as 2D perovskites, Dion-Jacobson, Ruddlesden-Popper, Aurivillius, tungsten-bronzes, and others, are presented, and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among most recent applications, this volume focuses on applications related with interactions with other molecules, on photovoltaics, and on memories, with a special attention to perovskite solar cells that have certainly attracted the most attention of researchers in recent years, opening extremely promising routes in photovoltaics. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals; it proposes a reasonable balance between experimental and theoretical results, and between fundamental aspects and applied properties.This volume can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject, and is presented in a pedagogical way): it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments, who will find excellent detailed introductions up to hotsubjects. It may also be used by undergraduate students who should approach given subjects. The volume contains 800 pages written by 76 authors from different countries, it has an index, and is completed by numerous figures to illustrate the text.

Perovskites and Other Framework Structure Crystalline Materials

Perovskites and Other Framework Structure Crystalline Materials PDF Author: Pierre Saint-Grégoire
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 822

Book Description
Internet site of the book: http: //perovskitesandotherfws.co-ac.com ----------------------------------------------------------------Perovskites are among the most famous materials due to their exceptional properties: they present nearly all existing types of interesting properties, in particular as ferroics or multiferroics, they may be insulators, (super)conductors, or semiconductors, magnetoresistant, they are used in numerous devices, they present hundreds of variants and different crystalline phases and phase transitions, and recently appeared as probably the most promising materials for photovoltaics. With a crystal structure characterized by octahedra that share their corners, these materials belong to the wider category of Framework Structure (FWS) materials the structure of which is based on units (octahedra, tetrahedra, ...) that share some of their corners (or edges) with their neighbours. This particular feature of FWS materials confers to them unique properties. This review volume is constituted of 26 chapters on different aspects, and is divided in two parts, Fundamental aspects and general properties, and Elaborated materials and applied properties . Its main purpose is to attempt to identify the properties common to all members of the vast family of FWS materials, and understand their differences. Besides perovskites, derived compounds as 2D perovskites, Dion-Jacobson, Ruddlesden-Popper, Aurivillius, tungsten-bronzes, and others, are presented, and their preparation and/or properties as single crystals, ceramics, thin films, multilayers, nanomaterials, nanofibers, nanorods, etc, are discussed. We focus on new trends and important recent developments by leaving somewhat aside more classical aspects which can be easily found in older textbooks or review articles. Among most recent applications, this volume focuses on applications related with interactions with other molecules, on photovoltaics, and on memories, with a special attention to perovskite solar cells that have certainly attracted the most attention of researchers in recent years, opening extremely promising routes in photovoltaics. In conclusion, this book presents a collection of texts elucidating various aspects of the relation between structural organization (including dynamical aspects) and singular properties of framework crystals; it proposes a reasonable balance between experimental and theoretical results, and between fundamental aspects and applied properties.This volume can be approached on several levels (each chapter initially assumes that the reader is not a specialist in the subject, and is presented in a pedagogical way): it is accessible to master or doctoral students, as well as to researchers who want to have informations on recent developments, who will find excellent detailed introductions up to hotsubjects. It may also be used by undergraduate students who should approach given subjects. The volume contains 800 pages written by 76 authors from different countries, it has an index, and is completed by numerous figures to illustrate the text.

Optical Properties of Materials and Their Applications

Optical Properties of Materials and Their Applications PDF Author: Jai Singh
Publisher: John Wiley & Sons
ISBN: 1119506050
Category : Science
Languages : en
Pages : 924

Book Description
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.

Springer Handbook of Glass

Springer Handbook of Glass PDF Author: J. David Musgraves
Publisher: Springer Nature
ISBN: 3319937286
Category : Technology & Engineering
Languages : en
Pages : 1851

Book Description
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.

Comprehensive Inorganic Chemistry II

Comprehensive Inorganic Chemistry II PDF Author:
Publisher: Newnes
ISBN: 0080965296
Category : Science
Languages : en
Pages : 7694

Book Description
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973

Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies

Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies PDF Author: Laxman Singh
Publisher: CRC Press
ISBN: 1000952967
Category : Science
Languages : en
Pages : 279

Book Description
The book Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies, edited by Laxman Singh, Rituraj Dubey, and Prof. R. N. Rai, strives to address the multiple aspects of OLEDs and their applications in developing smart lightings and displays. OLEDs have been used in almost all kinds of digital displays like those of mobile phones, laptops, tablets, phablets, TVs, etc., due to their outstanding features, including superior color quality, low cost, wide viewing angle, easy fabrication, mercury-free manufacture, tenability, stretchability, flexibility, etc. Investigations related to the synthesis of new organic materials and fabrication techniques have inspired us to write this book, which will fulfil the desire and thirst of OLEDs-based researchers. Features Nanolithographic techniques used and the challenges involved Printing technology for fabrication Designing of hybrid perovskites Stretchable and flexible materials used Metal–dielectric composites and efficiency of organic semiconductor via molecular doping for OLEDs applications Organic small molecule materials and display technologies involved New generation of organic materials with respect to photophysical approach Mixed valence π-conjugated coordination polymers used Electroluminescent polymer used Blue fluorescent and phosphorescent organic materials used In comparison to other books available related to similar topics, this book aims at those audiences who are looking for a single source for a comprehensive understanding of strategies and their challenges with respect to material fabrication of OLEDs. This book covers the pace and productivity at a uniform level in each chapter with respect to the audiences, from doctoral student to postdoctoral researchers or from postdoctoral researchers to multidisciplinary field researchers with a background in physics, chemistry, materials science, and engineering, who are already working with organic materials and their applications.

Crystal Chemistry

Crystal Chemistry PDF Author: Gérard Ferey
Publisher: World Scientific Publishing Company
ISBN: 9813144211
Category :
Languages : en
Pages : 264

Book Description
Devoted to a diverse group of solid state scientists, the book has two objectives, both relating to structural chemistry: (i) a progressive analytic familiarization with the main parameters that govern the organization of crystallized matter and related crystal structures, (ii) a study of what are the various ways to 'read' a structure far beyond its representation in scientific articles. Hence, the reader will, from numerous examples illustrated in color, analyze what are the main characteristics of these structures, from their geometric characteristics, their coordination polyhedra, their connections with the resulting dimensionalities of these solids, including also the defects they exhibit, before looking at possibilities to classify structures, within which recurrence laws can emerge. Chemists are required to understand the potentials of a new structure for becoming future materials scientists. The first part of the book is by no means a database for known structures, but facilitates a progressive understanding of the organization of the solid state. With these tools in hand, the reader is invited in the later part of the book to analyze new structures, and to also use new concepts for viewing structures in a more synthetic way for the future. Such new vision is already leading to the creation of completely new solids with outstanding characteristics that find applications in societal problems concerning energy, energy savings, environment and health. The content is not exclusively academic but relates to the creation of innovative materials, through a more physical approach, that might condition the future of materials.