Author: Alexander Birbrair
Publisher: Springer
ISBN: 3030026019
Category : Science
Languages : en
Pages : 172
Book Description
This volume explores novel concepts of pericyte biology. The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of detailed chapters on what we know so far about the pericytes. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology in Disease, Pericyte Biology - Novel Concepts presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific diseases.
Pericyte Biology - Novel Concepts
Author: Alexander Birbrair
Publisher: Springer
ISBN: 3030026019
Category : Science
Languages : en
Pages : 172
Book Description
This volume explores novel concepts of pericyte biology. The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of detailed chapters on what we know so far about the pericytes. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology in Disease, Pericyte Biology - Novel Concepts presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific diseases.
Publisher: Springer
ISBN: 3030026019
Category : Science
Languages : en
Pages : 172
Book Description
This volume explores novel concepts of pericyte biology. The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of detailed chapters on what we know so far about the pericytes. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology in Disease, Pericyte Biology - Novel Concepts presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific diseases.
Pericyte Biology in Different Organs
Author: Alexander Birbrair
Publisher: Springer
ISBN: 3030110931
Category : Science
Languages : en
Pages : 283
Book Description
The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of thirteen detailed chapters on what we know so far about pericytes in distinct organs in physiological and pathological conditions. Further, it provides an update on the most novel functions attributed to these cells and will introduce a newer generation of researchers and scientists to the importance of these cells, ranging from their discovery in different organs through current state-of-the-science. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and vascular research. This volume explores pericytes' physiologic roles in different tissues, ranging from the pancreas, lungs and liver through skeletal muscle, gut, retina and more. Together with its companion volumes Pericyte Biology in Disease and Pericyte Biology – Novel Concepts, Pericyte Biology in Different Organs presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific organs.
Publisher: Springer
ISBN: 3030110931
Category : Science
Languages : en
Pages : 283
Book Description
The present book is an attempt to describe the most recent developments in the area of pericyte biology which is one of the emergent hot topics in the field of molecular and cellular biology today. Here, we present a selected collection of thirteen detailed chapters on what we know so far about pericytes in distinct organs in physiological and pathological conditions. Further, it provides an update on the most novel functions attributed to these cells and will introduce a newer generation of researchers and scientists to the importance of these cells, ranging from their discovery in different organs through current state-of-the-science. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and vascular research. This volume explores pericytes' physiologic roles in different tissues, ranging from the pancreas, lungs and liver through skeletal muscle, gut, retina and more. Together with its companion volumes Pericyte Biology in Disease and Pericyte Biology – Novel Concepts, Pericyte Biology in Different Organs presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cells and researchers or clinicians involved with specific organs.
Pericyte Biology in Disease
Author: Alexander Birbrair
Publisher: Springer
ISBN: 9783030169107
Category : Science
Languages : en
Pages : 355
Book Description
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer’s disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology – Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
Publisher: Springer
ISBN: 9783030169107
Category : Science
Languages : en
Pages : 355
Book Description
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer’s disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology – Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
Biology of Pericytes – Recent Advances
Author: Alexander Birbrair
Publisher: Springer Nature
ISBN: 3030621294
Category : Science
Languages : en
Pages : 283
Book Description
Pericytes were originally discovered and named more than hundred years ago as contractile cells around the blood vessel endothelial cells. Due to the lack of exclusive markers, pericytes are now defined by a combination of location, morphology and gene expression. Pericytes are attracting increasing attention as important regulators during development and during normal and disturbed organ function. In recent years, remarkable progress has been made in the identification and characterization of pericytes subpopulations and their amazing functions using state-of-art techniques. These advantages facilitated identification of molecular basis of interaction between these cells with several other more well studied cell types, and revealed key signals derived from pericytes involved in homeostasis, regeneration, and disease regulation. In the last ten years, several unexpected roles of pericytes have been discovered. It has been demonstrated that pericytes from different tissues differ in their properties as well as functions. Even more, pericytes are heterogeneous also within the same organ. This book is will describe the major contributions of pericytes to different organs biology in physiological and pathological conditions. The book will teach the readers about this so special cell type that 10 years ago was almost completely forgotten, and it was associated basically only with vascular stability. Recently, it become a very hot topic to work in. Several articles in Nature, Science and Cell have been and are being currently published about this cell type. These recent works are revealing how important those cells are for before unimaginable biological processes. Thus, this book will update us on what are the most novel functions attributed to these cells. Also, will introduce to the young generation all the history about these cells from when they were discovered in different organs till where we are now in this field. So it will be a great book for both cell biology students as well as researchers that will have an update on these cells biology in different organs.
Publisher: Springer Nature
ISBN: 3030621294
Category : Science
Languages : en
Pages : 283
Book Description
Pericytes were originally discovered and named more than hundred years ago as contractile cells around the blood vessel endothelial cells. Due to the lack of exclusive markers, pericytes are now defined by a combination of location, morphology and gene expression. Pericytes are attracting increasing attention as important regulators during development and during normal and disturbed organ function. In recent years, remarkable progress has been made in the identification and characterization of pericytes subpopulations and their amazing functions using state-of-art techniques. These advantages facilitated identification of molecular basis of interaction between these cells with several other more well studied cell types, and revealed key signals derived from pericytes involved in homeostasis, regeneration, and disease regulation. In the last ten years, several unexpected roles of pericytes have been discovered. It has been demonstrated that pericytes from different tissues differ in their properties as well as functions. Even more, pericytes are heterogeneous also within the same organ. This book is will describe the major contributions of pericytes to different organs biology in physiological and pathological conditions. The book will teach the readers about this so special cell type that 10 years ago was almost completely forgotten, and it was associated basically only with vascular stability. Recently, it become a very hot topic to work in. Several articles in Nature, Science and Cell have been and are being currently published about this cell type. These recent works are revealing how important those cells are for before unimaginable biological processes. Thus, this book will update us on what are the most novel functions attributed to these cells. Also, will introduce to the young generation all the history about these cells from when they were discovered in different organs till where we are now in this field. So it will be a great book for both cell biology students as well as researchers that will have an update on these cells biology in different organs.
Vascular Biology of the Placenta
Author: Yuping Wang
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.
The Endothelium
Author: Michel Félétou
Publisher: Morgan & Claypool Publishers
ISBN: 1615041230
Category : Science
Languages : en
Pages : 309
Book Description
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615041230
Category : Science
Languages : en
Pages : 309
Book Description
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Inflammation and the Microcirculation
Author: D. Neil Granger
Publisher: Morgan & Claypool Publishers
ISBN: 1615041656
Category : Medical
Languages : en
Pages : 99
Book Description
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615041656
Category : Medical
Languages : en
Pages : 99
Book Description
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Pericyte Biology in Disease
Author: Alexander Birbrair
Publisher: Springer
ISBN: 3030169081
Category : Science
Languages : en
Pages : 359
Book Description
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer’s disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology – Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
Publisher: Springer
ISBN: 3030169081
Category : Science
Languages : en
Pages : 359
Book Description
This volume explores pericytes' roles under distinct pathological conditions, ranging from tumors, ALS, Alzheimer’s disease, Multiple Sclerosis, stroke, diabetes, atherosclerosis, muscular dystrophies and more. Together with its companion volumes Pericyte Biology in Different Organs and Pericyte Biology – Novel Concepts, Pericyte Biology in Disease presents a comprehensive update on the latest information and most novel functions attributed to pericytes. To those researchers newer to this area, it will be useful to have the background information on these cells' unique history. It will be invaluable for both advanced cell biology students as well as researchers in cell biology, stem cell biology and clinicians involved with these specific diseases.
Regulation of Angiogenesis
Author: I.D. Goldberg
Publisher: Springer Science & Business Media
ISBN: 9783764353094
Category : Medical
Languages : en
Pages : 520
Book Description
thrombospondin-l may be encoded by a tumor suppressor gene. Dr. O'Reilly discusses angiostatin, an exciting recently discovered factor derived from the fibrinolytic proenzyme plasminogen that inhibits tumor angiogenesis, primary tumor growth, and formation of metastases. In addition to the soluble class of angiogenesis-regulatory factors discussed above, interactions of endothelial cells with components of the extracellular matrix and with other cell types are critical for proper formation of vessels. Drs. Grant and Kleinman discuss the role of laminin and other matrix molecules in regulation of capillary formation. Dr. van Hinsbergh and colleagues describe the role of fibrin and the fibrinolytic system in angiogenesis associated with wound repair. Cell surface mole cules that interact with the extracellular matrix have been implicated in the regulation of angiogenesis. Dr. Varner discusses some exciting new studies on the roles of specific vascular cell integrins (a /33 and a /3s) in mediating v v tumor angiogenesis and angiogenesis associated with wound healing. The pericyte, a vascular smooth muscle-like cell, exerts a powerful regulatory effect during the later stages of angiogenesis in which mature capillaries are formed. These mechanisms are discussed by Drs. Hirschi and D' Amore. With all the recent progress in the molecular biology of angiogenesis, the contribution of microenvironmental conditions such as hypoxia and pH to angiogenesis is often ignored. Drs. Rockwell and Knisely review this area of investigation and present studies of experimental tumor models.
Publisher: Springer Science & Business Media
ISBN: 9783764353094
Category : Medical
Languages : en
Pages : 520
Book Description
thrombospondin-l may be encoded by a tumor suppressor gene. Dr. O'Reilly discusses angiostatin, an exciting recently discovered factor derived from the fibrinolytic proenzyme plasminogen that inhibits tumor angiogenesis, primary tumor growth, and formation of metastases. In addition to the soluble class of angiogenesis-regulatory factors discussed above, interactions of endothelial cells with components of the extracellular matrix and with other cell types are critical for proper formation of vessels. Drs. Grant and Kleinman discuss the role of laminin and other matrix molecules in regulation of capillary formation. Dr. van Hinsbergh and colleagues describe the role of fibrin and the fibrinolytic system in angiogenesis associated with wound repair. Cell surface mole cules that interact with the extracellular matrix have been implicated in the regulation of angiogenesis. Dr. Varner discusses some exciting new studies on the roles of specific vascular cell integrins (a /33 and a /3s) in mediating v v tumor angiogenesis and angiogenesis associated with wound healing. The pericyte, a vascular smooth muscle-like cell, exerts a powerful regulatory effect during the later stages of angiogenesis in which mature capillaries are formed. These mechanisms are discussed by Drs. Hirschi and D' Amore. With all the recent progress in the molecular biology of angiogenesis, the contribution of microenvironmental conditions such as hypoxia and pH to angiogenesis is often ignored. Drs. Rockwell and Knisely review this area of investigation and present studies of experimental tumor models.
The Cerebral Circulation
Author: Marilyn J. Cipolla
Publisher: Biota Publishing
ISBN: 1615047239
Category : Medical
Languages : en
Pages : 82
Book Description
This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.
Publisher: Biota Publishing
ISBN: 1615047239
Category : Medical
Languages : en
Pages : 82
Book Description
This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.