Author: Mihail Garevski
Publisher: Springer Science & Business Media
ISBN: 9048195446
Category : Science
Languages : en
Pages : 560
Book Description
This book contains 9 invited keynote and 12 theme lectures presented at the 14th European Conference on Earthquake Engineering (14ECEE) held in Ohrid, Republic of Macedonia, from August 30 to September 3, 2010. The conference was organized by the Macedonian Association for Earthquake Engineering (MAEE), under the auspices of European Association for Earthquake Engineering (EAEE). The book is organized in twenty one state-of-the-art papers written by carefully selected very eminent researchers mainly from Europe but also from USA and Japan. The contributions provide a very comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake resistant engineering structures, new techniques and technologies and managing risk in seismic regions are all among the different topics covered in this book. The book also includes the First Ambraseys Distinguished Award Lecture given by Prof. Theo P. Tassios in the honor of Prof. Nicholas N. Ambraseys. The aim is to present the current state of knowledge and engineering practice, addressing recent and ongoing developments while also projecting innovative ideas for future research and development. It is not always possible to have so many selected manuscripts within the broad spectrum of earthquake engineering thus the book is unique in one sense and may serve as a good reference book for researchers in this field. Audience: This book will be of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Performance-based Seismic Design of Tall RC Wall Buildings
Author: Domenico Pennucci
Publisher:
ISBN: 9788861980600
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Publisher:
ISBN: 9788861980600
Category : Technology & Engineering
Languages : en
Pages : 319
Book Description
Earthquake Engineering in Europe
Author: Mihail Garevski
Publisher: Springer Science & Business Media
ISBN: 9048195446
Category : Science
Languages : en
Pages : 560
Book Description
This book contains 9 invited keynote and 12 theme lectures presented at the 14th European Conference on Earthquake Engineering (14ECEE) held in Ohrid, Republic of Macedonia, from August 30 to September 3, 2010. The conference was organized by the Macedonian Association for Earthquake Engineering (MAEE), under the auspices of European Association for Earthquake Engineering (EAEE). The book is organized in twenty one state-of-the-art papers written by carefully selected very eminent researchers mainly from Europe but also from USA and Japan. The contributions provide a very comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake resistant engineering structures, new techniques and technologies and managing risk in seismic regions are all among the different topics covered in this book. The book also includes the First Ambraseys Distinguished Award Lecture given by Prof. Theo P. Tassios in the honor of Prof. Nicholas N. Ambraseys. The aim is to present the current state of knowledge and engineering practice, addressing recent and ongoing developments while also projecting innovative ideas for future research and development. It is not always possible to have so many selected manuscripts within the broad spectrum of earthquake engineering thus the book is unique in one sense and may serve as a good reference book for researchers in this field. Audience: This book will be of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Publisher: Springer Science & Business Media
ISBN: 9048195446
Category : Science
Languages : en
Pages : 560
Book Description
This book contains 9 invited keynote and 12 theme lectures presented at the 14th European Conference on Earthquake Engineering (14ECEE) held in Ohrid, Republic of Macedonia, from August 30 to September 3, 2010. The conference was organized by the Macedonian Association for Earthquake Engineering (MAEE), under the auspices of European Association for Earthquake Engineering (EAEE). The book is organized in twenty one state-of-the-art papers written by carefully selected very eminent researchers mainly from Europe but also from USA and Japan. The contributions provide a very comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake resistant engineering structures, new techniques and technologies and managing risk in seismic regions are all among the different topics covered in this book. The book also includes the First Ambraseys Distinguished Award Lecture given by Prof. Theo P. Tassios in the honor of Prof. Nicholas N. Ambraseys. The aim is to present the current state of knowledge and engineering practice, addressing recent and ongoing developments while also projecting innovative ideas for future research and development. It is not always possible to have so many selected manuscripts within the broad spectrum of earthquake engineering thus the book is unique in one sense and may serve as a good reference book for researchers in this field. Audience: This book will be of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Performance Based Seismic Design for Tall Buildings
Author: Ramin Golesorkhi
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116
Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116
Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.
Performance-Based Seismic Design of Concrete Structures and Infrastructures
Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1522520902
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Publisher: IGI Global
ISBN: 1522520902
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Perspectives on European Earthquake Engineering and Seismology
Author: Atilla Ansal
Publisher: Springer
ISBN: 3319169645
Category : Science
Languages : en
Pages : 458
Book Description
This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Publisher: Springer
ISBN: 3319169645
Category : Science
Languages : en
Pages : 458
Book Description
This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering
Author: Azer A. Kasimzade
Publisher: Springer
ISBN: 3319931571
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book features chapters based on selected presentations from the International Congress on Advanced Earthquake Resistance of Structures, AERS2016, held in Samsun, Turkey, from 24 to 28 October 2016. It covers the latest advances in three widely popular research areas in Earthquake Engineering: Performance-Based Seismic Design, Seismic Isolation Systems, and Structural Health Monitoring. The book shows the vulnerability of high-rise and seismically isolated buildings to long periods of strong ground motions, and proposes new passive and semi-active structural seismic isolation systems to protect against such effects. These systems are validated through real-time hybrid tests on shaking tables. Structural health monitoring systems provide rapid assessment of structural safety after an earthquake and allow preventive measures to be taken, such as shutting down the elevators and gas lines, before damage occurs. Using the vibration data from instrumented tall buildings, the book demonstrates that large, distant earthquakes and surface waves, which are not accounted for in most attenuation equations, can cause long-duration shaking and damage in tall buildings. The overview of the current performance-based design methodologies includes discussions on the design of tall buildings and the reasons common prescriptive code provisions are not sufficient to address the requirements of tall-building design. In addition, the book explains the modelling and acceptance criteria associated with various performance-based design guidelines, and discusses issues such as selection and scaling of ground motion records, soil-foundation-structure interaction, and seismic instrumentation and peer review needs. The book is of interest to a wide range of professionals in earthquake engineering, including designers, researchers, and graduate students.
Publisher: Springer
ISBN: 3319931571
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book features chapters based on selected presentations from the International Congress on Advanced Earthquake Resistance of Structures, AERS2016, held in Samsun, Turkey, from 24 to 28 October 2016. It covers the latest advances in three widely popular research areas in Earthquake Engineering: Performance-Based Seismic Design, Seismic Isolation Systems, and Structural Health Monitoring. The book shows the vulnerability of high-rise and seismically isolated buildings to long periods of strong ground motions, and proposes new passive and semi-active structural seismic isolation systems to protect against such effects. These systems are validated through real-time hybrid tests on shaking tables. Structural health monitoring systems provide rapid assessment of structural safety after an earthquake and allow preventive measures to be taken, such as shutting down the elevators and gas lines, before damage occurs. Using the vibration data from instrumented tall buildings, the book demonstrates that large, distant earthquakes and surface waves, which are not accounted for in most attenuation equations, can cause long-duration shaking and damage in tall buildings. The overview of the current performance-based design methodologies includes discussions on the design of tall buildings and the reasons common prescriptive code provisions are not sufficient to address the requirements of tall-building design. In addition, the book explains the modelling and acceptance criteria associated with various performance-based design guidelines, and discusses issues such as selection and scaling of ground motion records, soil-foundation-structure interaction, and seismic instrumentation and peer review needs. The book is of interest to a wide range of professionals in earthquake engineering, including designers, researchers, and graduate students.
Seismic Design of Reinforced Concrete Buildings
Author: Jack Moehle
Publisher: McGraw Hill Professional
ISBN: 0071839453
Category : Technology & Engineering
Languages : en
Pages : 783
Book Description
Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations
Publisher: McGraw Hill Professional
ISBN: 0071839453
Category : Technology & Engineering
Languages : en
Pages : 783
Book Description
Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations
Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society
Author: Matej Fischinger
Publisher: Springer
ISBN: 9401788758
Category : Science
Languages : en
Pages : 503
Book Description
The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.
Publisher: Springer
ISBN: 9401788758
Category : Science
Languages : en
Pages : 503
Book Description
The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.
The Seismic Design Handbook
Author: Farzad Naeim
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Quantification of Building Seismic Performance Factors
Author:
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 424
Book Description
This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 424
Book Description
This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.