Author: Lewis M. Fraas
Publisher: Jx Crystals
ISBN: 9780974853000
Category : Gallium arsenide solar cells
Languages : en
Pages :
Book Description
Today's commercial solar cells only convert 15% of the sun's radiant energy into electricity. However, 35% efficient solar cells are real. They were first demonstrated in 1989. Today, these high efficiency cells have replaced the silicon solar cells on satellites in space. However here on earth, we are still using 15% efficient cells. High efficiency means higher power and eventually lower cost. This book goes beyond a description of today's baseline solar power systems to describe innovations in high power density photovoltaics that have occurred in the last 15 years. As a first example, an array of these high efficiency cells can be combined with an array of low cost plastic lenses to produce cost competitive solar electric power. As a second example, since this 35% cell efficiency comes about by stacking a visible light sensitive cell on an infrared sensitive cell, the new infrared cell can now be used in furnaces to generate electricity at night along with heat for your home. In addition to describing these technical breakthroughs in clear and simple terms, this book also describes the path from research breakthrough to high volume production emphasizing the cooperation required between government and private enterprise. Given this cooperation, solar cells are no longer just toys but can be a major contributor to the electric power production mix within the next 10 years.
Path to Affordable Solar Electric Power & the 35% Efficient Solar Cell
Author: Lewis M. Fraas
Publisher: Jx Crystals
ISBN: 9780974853000
Category : Gallium arsenide solar cells
Languages : en
Pages :
Book Description
Today's commercial solar cells only convert 15% of the sun's radiant energy into electricity. However, 35% efficient solar cells are real. They were first demonstrated in 1989. Today, these high efficiency cells have replaced the silicon solar cells on satellites in space. However here on earth, we are still using 15% efficient cells. High efficiency means higher power and eventually lower cost. This book goes beyond a description of today's baseline solar power systems to describe innovations in high power density photovoltaics that have occurred in the last 15 years. As a first example, an array of these high efficiency cells can be combined with an array of low cost plastic lenses to produce cost competitive solar electric power. As a second example, since this 35% cell efficiency comes about by stacking a visible light sensitive cell on an infrared sensitive cell, the new infrared cell can now be used in furnaces to generate electricity at night along with heat for your home. In addition to describing these technical breakthroughs in clear and simple terms, this book also describes the path from research breakthrough to high volume production emphasizing the cooperation required between government and private enterprise. Given this cooperation, solar cells are no longer just toys but can be a major contributor to the electric power production mix within the next 10 years.
Publisher: Jx Crystals
ISBN: 9780974853000
Category : Gallium arsenide solar cells
Languages : en
Pages :
Book Description
Today's commercial solar cells only convert 15% of the sun's radiant energy into electricity. However, 35% efficient solar cells are real. They were first demonstrated in 1989. Today, these high efficiency cells have replaced the silicon solar cells on satellites in space. However here on earth, we are still using 15% efficient cells. High efficiency means higher power and eventually lower cost. This book goes beyond a description of today's baseline solar power systems to describe innovations in high power density photovoltaics that have occurred in the last 15 years. As a first example, an array of these high efficiency cells can be combined with an array of low cost plastic lenses to produce cost competitive solar electric power. As a second example, since this 35% cell efficiency comes about by stacking a visible light sensitive cell on an infrared sensitive cell, the new infrared cell can now be used in furnaces to generate electricity at night along with heat for your home. In addition to describing these technical breakthroughs in clear and simple terms, this book also describes the path from research breakthrough to high volume production emphasizing the cooperation required between government and private enterprise. Given this cooperation, solar cells are no longer just toys but can be a major contributor to the electric power production mix within the next 10 years.
Low-Cost Solar Electric Power
Author: Lewis M. Fraas
Publisher: Springer Nature
ISBN: 3031308123
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The authors address the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40 efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natural gas combined heat and power systems. Solar energy production in the evening hours is also given fresh consideration via the convergence of low cost access to space and the growing number of large terrestrial solar electric power fields around the world. Dr. Fraas has been active in the development of Solar Cells and Solar Electric Power Systems for space and terrestrial applications since 1975. His research team at Boeing demonstrated the first GaAs/GaSb tandem concentrator solar cell in 1989 with a world record energy conversion efficiency of 35, garnering awards from Boeing and NASA. He has over 30 years of experience at Hughes Research Labs, Chevron Research Co, and the Boeing High Technology Center working with advanced semiconductor devices. In a pioneering paper, he proposed the InGaP/GaInAs/Ge triple junction solar cell predicting a cell terrestrial conversion efficiency of 40 at 300 suns concentration. Having become today’s predominant cell for space satellites, that cell is now entering high volume production for terrestrial Concentrated Photovoltaic (CPV) systems. Since joining JX Crystals, Dr. Fraas has pioneered the development of various thermophotovoltaic (TPV) systems based on the new GaSb infrared sensitive PV cell. Dr. Fraas holds degrees from Caltech (B.Sc. Physics), Harvard (M. A. Applied Physics), and USC (Ph.D. EE).
Publisher: Springer Nature
ISBN: 3031308123
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The authors address the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40 efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natural gas combined heat and power systems. Solar energy production in the evening hours is also given fresh consideration via the convergence of low cost access to space and the growing number of large terrestrial solar electric power fields around the world. Dr. Fraas has been active in the development of Solar Cells and Solar Electric Power Systems for space and terrestrial applications since 1975. His research team at Boeing demonstrated the first GaAs/GaSb tandem concentrator solar cell in 1989 with a world record energy conversion efficiency of 35, garnering awards from Boeing and NASA. He has over 30 years of experience at Hughes Research Labs, Chevron Research Co, and the Boeing High Technology Center working with advanced semiconductor devices. In a pioneering paper, he proposed the InGaP/GaInAs/Ge triple junction solar cell predicting a cell terrestrial conversion efficiency of 40 at 300 suns concentration. Having become today’s predominant cell for space satellites, that cell is now entering high volume production for terrestrial Concentrated Photovoltaic (CPV) systems. Since joining JX Crystals, Dr. Fraas has pioneered the development of various thermophotovoltaic (TPV) systems based on the new GaSb infrared sensitive PV cell. Dr. Fraas holds degrees from Caltech (B.Sc. Physics), Harvard (M. A. Applied Physics), and USC (Ph.D. EE).
Low-Cost Solar Electric Power
Author: Lewis M. Fraas
Publisher: Springer
ISBN: 9783319377872
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The author addresses the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40 efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natural gas combined heat and power systems. Solar energy production in the evening hours is also given fresh consideration via the convergence of low cost access to space and the growing number of large terrestrial solar electric power fields around the world. Dr. Fraas has been active in the development of Solar Cells and Solar Electric Power Systems for space and terrestrial applications since 1975. His research team at Boeing demonstrated the first GaAs/GaSb tandem concentrator solar cell in 1989 with a world record energy conversion efficiency of 35, garnering awards from Boeing and NASA. He has over 30 years of experience at Hughes Research Labs, Chevron Research Co, and the Boeing High Technology Center working with advanced semiconductor devices. In a pioneering paper, he proposed the InGaP/GaInAs/Ge triple junction solar cell predicting a cell terrestrial conversion efficiency of 40 at 300 suns concentration. Having become today’s predominant cell for space satellites, that cell is now entering high volume production for terrestrial Concentrated Photovoltaic (CPV) systems. Since joining JX Crystals, Dr. Fraas has pioneered the development of various thermophotovoltaic (TPV) systems based on the new GaSb infrared sensitive PV cell. Dr. Fraas holds degrees from Caltech (B.Sc. Physics), Harvard (M. A. Applied Physics), and USC (Ph.D. EE).
Publisher: Springer
ISBN: 9783319377872
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book describes recent breakthroughs that promise major cost reductions in solar energy production in a clear and highly accessible manner. The author addresses the three key areas that have commonly resulted in criticism of solar energy in the past: cost, availability, and variability. Coverage includes cutting-edge information on recently developed 40 efficient solar cells, which can produce double the power of currently available commercial cells. The discussion also highlights the potentially transformative emergence of opportunities for integration of solar energy storage and natural gas combined heat and power systems. Solar energy production in the evening hours is also given fresh consideration via the convergence of low cost access to space and the growing number of large terrestrial solar electric power fields around the world. Dr. Fraas has been active in the development of Solar Cells and Solar Electric Power Systems for space and terrestrial applications since 1975. His research team at Boeing demonstrated the first GaAs/GaSb tandem concentrator solar cell in 1989 with a world record energy conversion efficiency of 35, garnering awards from Boeing and NASA. He has over 30 years of experience at Hughes Research Labs, Chevron Research Co, and the Boeing High Technology Center working with advanced semiconductor devices. In a pioneering paper, he proposed the InGaP/GaInAs/Ge triple junction solar cell predicting a cell terrestrial conversion efficiency of 40 at 300 suns concentration. Having become today’s predominant cell for space satellites, that cell is now entering high volume production for terrestrial Concentrated Photovoltaic (CPV) systems. Since joining JX Crystals, Dr. Fraas has pioneered the development of various thermophotovoltaic (TPV) systems based on the new GaSb infrared sensitive PV cell. Dr. Fraas holds degrees from Caltech (B.Sc. Physics), Harvard (M. A. Applied Physics), and USC (Ph.D. EE).
Handbook of Clean Energy Systems, 6 Volume Set
Author: Jinyue Yan
Publisher: John Wiley & Sons
ISBN: 1118388585
Category : Science
Languages : en
Pages : 4038
Book Description
The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.
Publisher: John Wiley & Sons
ISBN: 1118388585
Category : Science
Languages : en
Pages : 4038
Book Description
The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.
Future of solar photovoltaic
Author: International Renewable Energy Agency IRENA
Publisher: International Renewable Energy Agency (IRENA)
ISBN: 9292601989
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
Publisher: International Renewable Energy Agency (IRENA)
ISBN: 9292601989
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.
Solar Cells and Their Applications
Author: Lewis M. Fraas
Publisher: John Wiley & Sons
ISBN: 1118024052
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell generated electricity from arrays in surrounding areas including the car owners' homes while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.
Publisher: John Wiley & Sons
ISBN: 1118024052
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell generated electricity from arrays in surrounding areas including the car owners' homes while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.
How Solar Energy Became Cheap
Author: Gregory F. Nemet
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.
Thermophotovoltaic Generation of Electricity
Author: Carlos Algora
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 390
Book Description
This book features peer-reviewed papers that were presented at the Seventh World Conference on Thermophotovoltaic Generation of Electricity. Thermophotovoltaic technology is a promising new means for the direct conversion of thermal to electric energy. Its potential applications range from military power, to space propulsion, to commercial products for market niches.
Publisher: American Institute of Physics
ISBN:
Category : Science
Languages : en
Pages : 390
Book Description
This book features peer-reviewed papers that were presented at the Seventh World Conference on Thermophotovoltaic Generation of Electricity. Thermophotovoltaic technology is a promising new means for the direct conversion of thermal to electric energy. Its potential applications range from military power, to space propulsion, to commercial products for market niches.
Fundamentals of Solar Cell Design
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578
Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578
Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.