Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles PDF full book. Access full book title Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles by Ben T. Ludington. Download full books in PDF and EPUB format.

Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles

Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles PDF Author: Ben T. Ludington
Publisher:
ISBN:
Category : Computer vision
Languages : en
Pages :

Book Description
Unmanned Aerial Vehicles (UAVs) are capable of placing sensors at unique vantage points without endangering a pilot. Therefore, they are well suited to perform target tracking missions. However, performing the mission can be burdensome for the operator. To track a target, the operator must estimate the position of the target from the incoming video stream, update the orientation of the camera, and move the vehicle to an appropriate vantage point. The purpose of the research in this thesis is to provide a target tracking system that performs these tasks automatically in real-time. The first task, which receives the majority of the attention, is estimating the position of the target within the incoming video stream. Because of the inherent clutter in the imagery, the resulting probability distributions are typically non-Gaussian and multi-modal. Therefore, classical state estimation techniques, such as the Kalman filter and its variants are unacceptable solutions. The particle filter has become a popular alternative since it is able to approximate the multi-modal distributions using a set of samples, and it is used as part of this research. To improve the performance of the filter and manage the inherently large computational burden a neural network is used to estimate the performance of the particle filter. The filter parameters are then changed in response to the performance. Once the position of the target is estimated in the frame, it is projected on the ground using the camera orientation and vehicle attitude and input into a linear predictor. The output of the predictor is used to update the orientation of the camera and vehicle waypoints. Through offline, simulation, and flight testing, the approach is shown to provide a powerful visual tracking system for use onboard the GTMax unmanned research helicopter.

Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles

Particle Filter Tracking Architecture for Use Onboard Unmanned Aerial Vehicles PDF Author: Ben T. Ludington
Publisher:
ISBN:
Category : Computer vision
Languages : en
Pages :

Book Description
Unmanned Aerial Vehicles (UAVs) are capable of placing sensors at unique vantage points without endangering a pilot. Therefore, they are well suited to perform target tracking missions. However, performing the mission can be burdensome for the operator. To track a target, the operator must estimate the position of the target from the incoming video stream, update the orientation of the camera, and move the vehicle to an appropriate vantage point. The purpose of the research in this thesis is to provide a target tracking system that performs these tasks automatically in real-time. The first task, which receives the majority of the attention, is estimating the position of the target within the incoming video stream. Because of the inherent clutter in the imagery, the resulting probability distributions are typically non-Gaussian and multi-modal. Therefore, classical state estimation techniques, such as the Kalman filter and its variants are unacceptable solutions. The particle filter has become a popular alternative since it is able to approximate the multi-modal distributions using a set of samples, and it is used as part of this research. To improve the performance of the filter and manage the inherently large computational burden a neural network is used to estimate the performance of the particle filter. The filter parameters are then changed in response to the performance. Once the position of the target is estimated in the frame, it is projected on the ground using the camera orientation and vehicle attitude and input into a linear predictor. The output of the predictor is used to update the orientation of the camera and vehicle waypoints. Through offline, simulation, and flight testing, the approach is shown to provide a powerful visual tracking system for use onboard the GTMax unmanned research helicopter.

Particle Filter-based Architecture for Video Target Tracking and Geo-location Using Multiple UAVs

Particle Filter-based Architecture for Video Target Tracking and Geo-location Using Multiple UAVs PDF Author: Christopher Sconyers
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages :

Book Description
Research in the areas of target detection, tracking, and geo-location is most important for enabling an unmanned aerial vehicle (UAV) platform to autonomously execute a mission or task without the need for a pilot or operator. Small-class UAVs and video camera sensors complemented with "soft sensors" realized only in software as a combination of a priori knowledge and sensor measurements are called upon to replace the cumbersome precision sensors on-board a large class UAV. The objective of this research is to develop a geo-location solution for use on-board multiple UAVs with mounted video camera sensors only to accurately geo-locate and track a target. This research introduces an estimation solution that combines the power of the particle filter with the utility of the video sensor as a general solution for passive target geo-location on-board multiple UAVs. The particle filter is taken advantage of, with its ability to use all of the available information about the system model, system uncertainty, and the sensor uncertainty to approximate the statistical likelihood of the target state. The geo-location particle filter is tested online and in real-time in a simulation environment involving multiple UAVs with video cameras and a maneuvering ground vehicle as a target. Simulation results show the geo-location particle filter estimates the target location with a high accuracy, the addition of UAVs or particles to the system improves the location estimation accuracy with minimal addition of processing time, and UAV control and trajectory generation algorithms restrict each UAV to a desired range to minimize error.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 924

Book Description


Tracking with Particle Filter for High-dimensional Observation and State Spaces

Tracking with Particle Filter for High-dimensional Observation and State Spaces PDF Author: Séverine Dubuisson
Publisher: John Wiley & Sons
ISBN: 1119053919
Category : Technology & Engineering
Languages : en
Pages : 223

Book Description
This title concerns the use of a particle filter framework to track objects defined in high-dimensional state-spaces using high-dimensional observation spaces. Current tracking applications require us to consider complex models for objects (articulated objects, multiple objects, multiple fragments, etc.) as well as multiple kinds of information (multiple cameras, multiple modalities, etc.). This book presents some recent research that considers the main bottleneck of particle filtering frameworks (high dimensional state spaces) for tracking in such difficult conditions.

Unmanned Aircraft Systems

Unmanned Aircraft Systems PDF Author: Ella Atkins
Publisher: John Wiley & Sons
ISBN: 1118866452
Category : Technology & Engineering
Languages : en
Pages : 740

Book Description
UNMANNED AIRCRAF T SYSTEMS UNMANNED AIRCRAF T SYSTEMS An unmanned aircraft system (UAS), sometimes called a drone, is an aircraft without a human pilot on board ??? instead, the UAS can be controlled by an operator station on the ground or may be autonomous in operation. UAS are capable of addressing a broad range of applications in diverse, complex environments. Traditionally employed in mainly military applications, recent regulatory changes around the world are leading to an explosion of interest and wide-ranging new applications for UAS in civil airspace. Covering the design, development, operation, and mission profiles of unmanned aircraft systems, this single, comprehensive volume forms a complete, stand-alone reference on the topic. The volume integrates with the online Wiley Encyclopedia of Aerospace Engineering, providing many new and updated articles for existing subscribers to that work. The chapters cover the following items: Airframe configurations and design (launch systems, power generation, propulsion) Operations (missions, integration issues, and airspace access) Coordination (multivehicle cooperation and human oversight) With contributions from leading experts, this volume is intended to be a valuable addition, and a useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.

Distributed Implementations of the Particle Filter with Performance Bounds

Distributed Implementations of the Particle Filter with Performance Bounds PDF Author: Arash Mohammadi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The focus of the thesis is on developing distributed estimation algorithms for systems with nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting of a large number of local processing and observation agents/nodes, which can communicate and cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks, and robotic networks. Signal processing in the AN/SNs is traditionally centralized and developed for systems with linear dynamics. In the centralized architecture, the participating nodes communicate their observations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to as the fusion centre, which is responsible for performing the predefined task. For centralized systems with linear dynamics, the Kalman filter provides the optimal approach but suffers from several drawbacks, e.g., it is generally unscalable and also susceptible to failure in case the fusion centre breaks down. In general, no analytic solution can be determined for systems with nonlinear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in the centralized configuration. Recently there has been a growing interest in distributed signal processing algorithms where: (i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the network topology, and; (iii) Each node exchanges data only within its local neighborhood. Distributed estimation have been widely explored for estimation/tracking problems in linear systems. Distributed particle filter implementations for nonlinear systems are still in their infancy and are the focus of this thesis. In the first part of this thesis, four different consensus-based distributed particle filter implementations are proposed. First, a constrained sufficient statistic based distributed implementation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking problems encountered in a number of applications including radar target tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF still requires a large number of iterations for the consensus runs to converge. To further reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iterations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking problems. Next, the unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of contributions, the UCD /DPF makes two important improvements to the existing distributed particle filter framework: (i) Unlike existing distributed implementations of the particle filter, the UCD /DPF uses all available global observations including the most recent ones in deriving the proposal distribution based on the distributed UKF, and; (ii) Computation of the global estimates from local estimates during the consensus step is based on an optimal fusion rule. Finally, a multi-rate consensus/fusion based framework for distributed implementation of the particle filter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently assimilate the local filtering distributions into the global posterior by compensating for the common past information between neighbouring nodes. The CF /DPF offers two distinct advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios where network connectivity is intermittent and consensus can not be reached between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density. Numerical simulations verify the near-optimal performance of the proposed distributed particle filter implementations. The second half of the thesis focuses on the distributed computation of the posterior Cramer-Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical architecture. The exact expression for distributed computation of the PCRLB is not yet available and only an approximate expression has recently been derived. Motivated by the distributed adaptive resource management problems with the objective of dynamically activating a time-variant subset of observation nodes to optimize the network's performance, the thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN configured in a distributed fashion. The dPCRLB computational algorithms are derived for both the off-line conventional (non-conditional) PCRLB determined primarily from the state model, observation model, and prior knowledge of the initial state of the system, and the online conditional PCRLB expressed as a function of past history of the observations. Compared to the non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of the estimator's performance and, consequently, a better criteria for sensor selection. The thesis then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are used to compute these bounds numerically and quantify their performance for data fusion problems through Monte-Carlo simulations.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Beyond the Kalman Filter: Particle Filters for Tracking Applications PDF Author: Branko Ristic
Publisher: Artech House
ISBN: 9781580538510
Category : Technology & Engineering
Languages : en
Pages : 328

Book Description
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Hybrid Artificial Intelligent Systems

Hybrid Artificial Intelligent Systems PDF Author: Francisco Javier de Cos Juez
Publisher: Springer
ISBN: 331992639X
Category : Computers
Languages : en
Pages : 765

Book Description
This volume constitutes the refereed proceedings of the 13th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2018, held in Oviedo, Spain, in June 2018. The 62 full papers published in this volume were carefully reviewed and selected from 104 submissions. They are organized in the following topical sections: Neurocomputing, fuzzy systems, rough sets, evolutionary algorithms, Agents andMultiagent Systems, and alike.

Robotics and Mechatronics

Robotics and Mechatronics PDF Author: Saïd Zeghloul
Publisher: Springer
ISBN: 3319223682
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
This volume contains papers that have been selected after review for oral presentation at ISRM 2015, the Fourth IFToMM International Symposium on Robotics and Mechatronics held in Poitiers, France 23-24 June 2015. These papers provide a vision of the evolution of the disciplines of robotics and mechatronics, including but not limited to: mechanism design; modeling and simulation; kinematics and dynamics of multibody systems; control methods; navigation and motion planning; sensors and actuators; bio-robotics; micro/nano-robotics; complex robotic systems; walking machines, humanoids-parallel kinematic structures: analysis and synthesis; smart devices; new design; application and prototypes. The book can be used by researchers and engineers in the relevant areas of robotics and mechatronics.

Theory, Design, and Applications of Unmanned Aerial Vehicles

Theory, Design, and Applications of Unmanned Aerial Vehicles PDF Author: A. R. Jha, Ph.D.
Publisher: CRC Press
ISBN: 1315354012
Category : Computers
Languages : en
Pages : 190

Book Description
This book provides a complete overview of the theory, design, and applications of unmanned aerial vehicles. It covers the basics, including definitions, attributes, manned vs. unmanned, design considerations, life cycle costs, architecture, components, air vehicle, payload, communications, data link, and ground control stations. Chapters cover types and civilian roles, sensors and characteristics, alternative power, communications and data links, conceptual design, human machine interface, sense and avoid systems, civil airspace issues and integration efforts, navigation, autonomous control, swarming, and future capabilities.