Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields PDF full book. Access full book title Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields by Ian Jacob Waters. Download full books in PDF and EPUB format.

Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields

Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields PDF Author: Ian Jacob Waters
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Resonant Magnetic Perturbations (RMPs) and Advanced Divertors (ADs) are both promising candidates to be utilized to meet the challenges of power exhaust in future fusion devices. A combination of both approaches is a promising avenue in order to achieve a stable, high performance plasma edge in an integrated way that takes into account divertor heat load limits while allowing for density and impurity control. The latter is of particular importance in spherical tokamaks which feature Edge Localized Mode free high confinement H-mode regimes prone to density rises and core impurity accumulation. The capability to control core densities and particle exhaust in spherical tokamaks needs to be assessed to determine their viability for compact fusion nuclear science facilities. The experimentally observed, density pump-out effect induced by the application of small amplitude RMPs is an important phenomena with respect to density control but its underlying cause is not well understood. One proposed mechanism for this density pump-out is that the opening of formerly confined field lines from the plasma edge enables enhanced parallel exhaust from the core plasma into the scrape-off-layer and to the divertor targets. Further, regions of stochasticity inside the separatrix can lead to enhanced perpendicular transport, even if these field lines do not themselves escape to the wall. Based on magneto-hydrodynamic (MHD) modeling, it has been previously proposed that a particular resonant response to the applied RMP fields--the so called "Edge-Peeling" response--enhances these geometric changes and thus drives enhanced exhaust. How much these mechanisms contribute to the overall pump-out is an open question. Further, how these RMPs impact the fundamental coupling between the plasma core, edge, and scrape-off-layer, through changes to particle fueling and particle exhaust, is the subject of this thesis. The EMC3-EIRENE code is utilized to assess these scenarios on the Mega-Ampere Spherical Tokamak (MAST) and it's upgrade (MAST-U). Initially, work was carried out to validate the theoretical mechanism for enhanced exhaust: that pressure gradients drive flows along open field lines in the plasma edge. Modeling showed that flows generated by local gas puffing are robust to changes in plasma parameters, and ultimately are a fundamental feature that can be experimentally validated. The underlying mechanism of static pressure driven flows was resolved with a 1D model. Modeling was then used to study the impact of RMP fields specifically. The inclusion of plasma response (from a resistive single fluid MHD model) in the RMP fields shows a more moderate response of density and temperature to the RMPs than does a vacuum field approach in MAST lower single null discharges. In this scenario, enhanced exhaust is shown to contribute to the density pump-out, but the modeled confinement changes underpredict the impact expected from analysis of experiments. Applying this same approach in MAST double null discharges--a second test case from experiment--shows that the addition of RMPs with the single fluid Edge-Peeling response does not cause a consistent pump-out signature in the modeling. This numerical finding of no density pump-out is in contrast to experimental observations for such configurations. This is found in spite of the fact that field lines are escaping the confined region, pressure driven flows are formed, and characteristic lobe structures appear in the plasma edge. This study has shown in a consistent manner that pressure driven flows along field lines are a viable mechanism to govern the plasma particle exhaust from the edge reservoir. If 3D magnetic flux bundles generated by RMP fields connect to regions deep inside of the separatrix, the parallel pressure gradient towards divertor targets will drive enhanced particle flux out of the formerly confined region of the plasma. If the length scale of connection is too long such that the parallel pressure gradient can not be maintained, the flow vanishes, and in spite of the nominal 3D structures in the magnetic field, no impact on particle exhaust is seen. This finding is important for the efforts to understand plasma exhaust with RMP fields. The mere existence of the 3D lobes of the separatrix, formed by the RMP fields, is not sufficient to explain the plasma density pump out alone. But for plasma scenarios with short connection length, and magnetic fields characterized by steep radial gradients they are a viable contributor

Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields

Particle Exhaust and Neutral Fueling in Spherical Tokamaks with Resonant Magnetic Perturbation Fields PDF Author: Ian Jacob Waters
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Resonant Magnetic Perturbations (RMPs) and Advanced Divertors (ADs) are both promising candidates to be utilized to meet the challenges of power exhaust in future fusion devices. A combination of both approaches is a promising avenue in order to achieve a stable, high performance plasma edge in an integrated way that takes into account divertor heat load limits while allowing for density and impurity control. The latter is of particular importance in spherical tokamaks which feature Edge Localized Mode free high confinement H-mode regimes prone to density rises and core impurity accumulation. The capability to control core densities and particle exhaust in spherical tokamaks needs to be assessed to determine their viability for compact fusion nuclear science facilities. The experimentally observed, density pump-out effect induced by the application of small amplitude RMPs is an important phenomena with respect to density control but its underlying cause is not well understood. One proposed mechanism for this density pump-out is that the opening of formerly confined field lines from the plasma edge enables enhanced parallel exhaust from the core plasma into the scrape-off-layer and to the divertor targets. Further, regions of stochasticity inside the separatrix can lead to enhanced perpendicular transport, even if these field lines do not themselves escape to the wall. Based on magneto-hydrodynamic (MHD) modeling, it has been previously proposed that a particular resonant response to the applied RMP fields--the so called "Edge-Peeling" response--enhances these geometric changes and thus drives enhanced exhaust. How much these mechanisms contribute to the overall pump-out is an open question. Further, how these RMPs impact the fundamental coupling between the plasma core, edge, and scrape-off-layer, through changes to particle fueling and particle exhaust, is the subject of this thesis. The EMC3-EIRENE code is utilized to assess these scenarios on the Mega-Ampere Spherical Tokamak (MAST) and it's upgrade (MAST-U). Initially, work was carried out to validate the theoretical mechanism for enhanced exhaust: that pressure gradients drive flows along open field lines in the plasma edge. Modeling showed that flows generated by local gas puffing are robust to changes in plasma parameters, and ultimately are a fundamental feature that can be experimentally validated. The underlying mechanism of static pressure driven flows was resolved with a 1D model. Modeling was then used to study the impact of RMP fields specifically. The inclusion of plasma response (from a resistive single fluid MHD model) in the RMP fields shows a more moderate response of density and temperature to the RMPs than does a vacuum field approach in MAST lower single null discharges. In this scenario, enhanced exhaust is shown to contribute to the density pump-out, but the modeled confinement changes underpredict the impact expected from analysis of experiments. Applying this same approach in MAST double null discharges--a second test case from experiment--shows that the addition of RMPs with the single fluid Edge-Peeling response does not cause a consistent pump-out signature in the modeling. This numerical finding of no density pump-out is in contrast to experimental observations for such configurations. This is found in spite of the fact that field lines are escaping the confined region, pressure driven flows are formed, and characteristic lobe structures appear in the plasma edge. This study has shown in a consistent manner that pressure driven flows along field lines are a viable mechanism to govern the plasma particle exhaust from the edge reservoir. If 3D magnetic flux bundles generated by RMP fields connect to regions deep inside of the separatrix, the parallel pressure gradient towards divertor targets will drive enhanced particle flux out of the formerly confined region of the plasma. If the length scale of connection is too long such that the parallel pressure gradient can not be maintained, the flow vanishes, and in spite of the nominal 3D structures in the magnetic field, no impact on particle exhaust is seen. This finding is important for the efforts to understand plasma exhaust with RMP fields. The mere existence of the 3D lobes of the separatrix, formed by the RMP fields, is not sufficient to explain the plasma density pump out alone. But for plasma scenarios with short connection length, and magnetic fields characterized by steep radial gradients they are a viable contributor

Mitigating Edge-localized Modes on the Mega-Ampere Spherical Tokamak Using Resonant Magnetic Perturbations

Mitigating Edge-localized Modes on the Mega-Ampere Spherical Tokamak Using Resonant Magnetic Perturbations PDF Author: Peter Denner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Type-I ELMy H-mode is planned to be the reference inductive operational scenario for ITER. However, unmitigated type-I ELMs would cause unacceptable damage to ITER's divertor, so a way of mitigating their effect must be found. This thesis focuses on the ergodization of the plasma edge using RMPs as a means of ELM control, and on related topics relevant to ergodic magnetic fields in MAST. Chapter 1 provides an introduction to nuclear fusion and chapter 2 provides an overview of ELMs. In chapter 3, the effect of ergodic fields on L-mode temperature profiles is calculated. It is found that no flattening of the temperature profile should be expected in MAST plasmas, which is in agreement with experimental results. In chapter 4, various metrics characterizing the degree of ergodicity in both L- and H-mode plasmas are calculated using vacuum modelling and compared with the amount of density pump-out observed experimentally in the those plasmas during the application of RMPs. The only parameter to show a correlation with the amount of density pump-out is the width of the laminar region. However, plasma response modelling provides a robust criterion for the occurrence of density pump-out that applies both to L- and H-mode plasmas. In chapter 5, the results of lower single-null H-mode ELM mitigation experiments using n=4 and n=6 RMPs are presented. ELM mitigation is achieved and refuelling of plasmas that had begun to undergo pump-out is successfully demonstrated. Both ELM frequency and density pump-out are found to increase with ELM coil current above a certain threshold. An analysis of an ergodic magnetic field formed by a current sheet on a rational surface is presented in chapter 6. Various properties of this ergodic field are calculated and compared with experimental effects observed in the plasma. Some agreement is found between the experimental data and the modelling. Finally, a summary of the thesis is given in chapter 7.

Interaction of Plasma Rotation and Resonant Magnetic Perturbation Fields in Tokamak

Interaction of Plasma Rotation and Resonant Magnetic Perturbation Fields in Tokamak PDF Author: A. Nicolai
Publisher:
ISBN:
Category : Plasma instabilities
Languages : en
Pages : 24

Book Description


An Introduction to Trapped-particle Instability in Tokamaks

An Introduction to Trapped-particle Instability in Tokamaks PDF Author: Wallace M. Manheimer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 114

Book Description


Mitigating Edge-localized Modes on the Mega-ampere Spherical Tokamak Using Resonant Magnetic Perturbations

Mitigating Edge-localized Modes on the Mega-ampere Spherical Tokamak Using Resonant Magnetic Perturbations PDF Author: Peter John Denner
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


The Effects of Resonant Magnetic Perturbations on Fast Ion Confinement in the Mega Amp Spherical Tokamak

The Effects of Resonant Magnetic Perturbations on Fast Ion Confinement in the Mega Amp Spherical Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 816

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion PDF Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 1475755953
Category : Science
Languages : en
Pages : 427

Book Description
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.

Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 830

Book Description