Particle and Energy Transport in the SOL of DIII-D and NSTX. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Particle and Energy Transport in the SOL of DIII-D and NSTX. PDF full book. Access full book title Particle and Energy Transport in the SOL of DIII-D and NSTX. by J. Watkins. Download full books in PDF and EPUB format.

Particle and Energy Transport in the SOL of DIII-D and NSTX.

Particle and Energy Transport in the SOL of DIII-D and NSTX. PDF Author: J. Watkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The far scrape-off layer (SOL) radial transport and plasma-wall contact is mediated by intermittent and ELM-driven transport. Experiments to characterize the intermittent transport and ELMs have been performed in both DIII-D and NSTX under similar conditions. Both intermittent transport and ELMs are comprised of filaments of hot, dense plasma (n{sub e} {approx} 1 x 10{sup 13} cm{sup -3}, T{sub e} {approx} 400 eV) originating at the edge, transport both particles and heat into the SOL by convection, increasing wall interaction and causing sputtering and impurity release. Both intermittent filaments and ELMs leave the pedestal region at speeds of {approx}0.5-3 km/s, losing heat and particles by parallel transport as they travel through the SOL. The intermittency shows many similarities in NSTX and DIII-D, featuring similar size (2-5 cm), large convective radial velocity, ''holes'' inside and peaks outside the LCFS which quickly decay and slow down with radius. Whereas in DIII-D the intermittency decays in both intensity and frequency in H-mode, it chiefly decays in frequency in NSTX. In the low collisionality (v* = {pi}R{sub q{sub 95}}/{lambda}C) (v* {approx} 0.1, N{sub G} {approx} 0.3) case, the ELMs impact the walls quite directly and account for {approx}90% of the wall particle flux, decreasing to {approx}30% at (v* {approx} 1.0, N{sub G}> 0.6).

Particle and Energy Transport in the SOL of DIII-D and NSTX.

Particle and Energy Transport in the SOL of DIII-D and NSTX. PDF Author: J. Watkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
The far scrape-off layer (SOL) radial transport and plasma-wall contact is mediated by intermittent and ELM-driven transport. Experiments to characterize the intermittent transport and ELMs have been performed in both DIII-D and NSTX under similar conditions. Both intermittent transport and ELMs are comprised of filaments of hot, dense plasma (n{sub e} {approx} 1 x 10{sup 13} cm{sup -3}, T{sub e} {approx} 400 eV) originating at the edge, transport both particles and heat into the SOL by convection, increasing wall interaction and causing sputtering and impurity release. Both intermittent filaments and ELMs leave the pedestal region at speeds of {approx}0.5-3 km/s, losing heat and particles by parallel transport as they travel through the SOL. The intermittency shows many similarities in NSTX and DIII-D, featuring similar size (2-5 cm), large convective radial velocity, ''holes'' inside and peaks outside the LCFS which quickly decay and slow down with radius. Whereas in DIII-D the intermittency decays in both intensity and frequency in H-mode, it chiefly decays in frequency in NSTX. In the low collisionality (v* = {pi}R{sub q{sub 95}}/{lambda}C) (v* {approx} 0.1, N{sub G} {approx} 0.3) case, the ELMs impact the walls quite directly and account for {approx}90% of the wall particle flux, decreasing to {approx}30% at (v* {approx} 1.0, N{sub G}> 0.6).

Analysis of Particle Flow in the DIII-D SOL and Divertor

Analysis of Particle Flow in the DIII-D SOL and Divertor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
The scrape-off layer (SOL) and divertor plasma in the DEEI-D tokamak has been modeled using the 2-D fluid code UEDGE. The resulting simulated plasmas are compared in detail with the numerous diagnostics available on the device. Good agreement is obtained between the experimental measurements and the simulations when relatively small values of the assumed anomalous perpendicular transport coefficients are used. We use a purely diffusive model for perpendicular transport, with transport coefficients which are constant in space. The value of each of these transport coefficients is varied in the simulation to match the measured upstream density and temperature profiles. The resulting plasma parameters are then compared with all other diagnostics which measure parameters at various poloidal locations in the SOL.

Multi-fluid Code Simulations Including Anomalous Non-diffusive Transport of Plasma and Impurities in the Tokamak SOL.

Multi-fluid Code Simulations Including Anomalous Non-diffusive Transport of Plasma and Impurities in the Tokamak SOL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description
Fast intermittent transport has been observed in the scrape-off layer (SOL) of major tokamaks including Alcator C-Mod, DIII-D, and NSTX. This kind of transport is not diffusive but rather convective. It strongly increases plasma flux to the chamber walls and enhances the recycling of neutral particles in the main chamber. We discuss anomalous cross-field convection (ACFC) model for impurity and main plasma ions and its relation to intermittent transport events, i.e. plasma density blobs and holes in the SOL. Along with plasma diffusivity coefficients, our transport model introduces time-independent anomalous cross-field convective velocity. In the discharge modelling, diffusivity coefficients and ACFC velocity profiles are adjusted to match a set of representative experimental data. We use this model in the edge plasma physics code UEDGE to simulate the multi-fluid two-dimensional transport for these three tokamaks. We present simulation results suggesting the dominance of anomalous convection in the far SOL transport. These results are consistent with the hypothesis that the chamber wall is an important source of impurities and that different impurity charge states have different directions of anomalous convective velocity.

Energy and Water Development Appropriations for 2010: Dept. of Energy fiscal year 2010 justifications

Energy and Water Development Appropriations for 2010: Dept. of Energy fiscal year 2010 justifications PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Federal aid to energy development
Languages : en
Pages : 1364

Book Description


Energy and Water Development Appropriations for 2011: Dept. of Energy fiscal year 2011 justifications (cont.)

Energy and Water Development Appropriations for 2011: Dept. of Energy fiscal year 2011 justifications (cont.) PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Federal aid to energy development
Languages : en
Pages : 1284

Book Description


Energy and Water Development Appropriations for 2011, Part 3, February 2010, 111-2 Hearings

Energy and Water Development Appropriations for 2011, Part 3, February 2010, 111-2 Hearings PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 1284

Book Description


Transport of Elm Energy and Particles Into the Sol and Divertor of DIII-D.

Transport of Elm Energy and Particles Into the Sol and Divertor of DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Book Description
We report on DIII-D data that reveal the underlying processes responsible for transport of energy and particles from the edge pedestal to the divertor target during edge-localized modes (ELMs). The separate convective and conductive transport of energy due to an ELM is determined by Thomson scattering measurements of electron density and temperature in the pedestal. Conductive transport is measured as a drop in pedestal temperature and decreases with increasing density. The convective transport of energy, measured as a loss of density from the pedestal, however, remains constant as a function of density. From the SOL ELM energy is quickly carried to the divertor target. An expected sheath limit to the ELM heat flux set by the slower arrival of pedestal ions is overcome by additional ionization of neutrals generated from the divertor target as evidenced by a fast, ≈100 [mu]s, rise in divertor density. A large in/out asymmetry of the divertor ELM heat flux is observed at high density, but becomes nearly symmetric at low density.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487463
Category : Science
Languages : en
Pages : 341

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Turbulent Transport In Magnetized Plasmas

Turbulent Transport In Magnetized Plasmas PDF Author: C Wendell Horton, Jr
Publisher: World Scientific
ISBN: 9814483885
Category : Science
Languages : en
Pages : 518

Book Description
The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.