Partial Differential Equations with Mathematica PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Partial Differential Equations with Mathematica PDF full book. Access full book title Partial Differential Equations with Mathematica by Dimitri Dimitrievich Vvedensky. Download full books in PDF and EPUB format.

Partial Differential Equations with Mathematica

Partial Differential Equations with Mathematica PDF Author: Dimitri Dimitrievich Vvedensky
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 486

Book Description
An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of

Partial Differential Equations with Mathematica

Partial Differential Equations with Mathematica PDF Author: Dimitri Dimitrievich Vvedensky
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 486

Book Description
An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of

Differential Equations with Mathematica

Differential Equations with Mathematica PDF Author: Martha L. Abell
Publisher: AP Professional
ISBN:
Category : Computers
Languages : en
Pages : 846

Book Description
The second edition of this groundbreaking book integrates new applications from a variety of fields, especially biology, physics, and engineering. The new handbook is also completely compatible with Mathematica version 3.0 and is a perfect introduction for Mathematica beginners. The CD-ROM contains built-in commands that let the users solve problems directly using graphical solutions.

Partial Differential Equations and Mathematica

Partial Differential Equations and Mathematica PDF Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1482296322
Category : Mathematics
Languages : en
Pages : 440

Book Description
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica PDF Author: Kuzman Adzievski
Publisher: CRC Press
ISBN: 1466510560
Category : Mathematics
Languages : en
Pages : 650

Book Description
With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

Numerical Solutions for Partial Differential Equations

Numerical Solutions for Partial Differential Equations PDF Author: Victor Grigor'e Ganzha
Publisher: CRC Press
ISBN: 9780849373794
Category : Mathematics
Languages : en
Pages : 364

Book Description
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica PDF Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372

Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods PDF Author: Stig Larsson
Publisher: Springer Science & Business Media
ISBN: 3540887059
Category : Mathematics
Languages : en
Pages : 263

Book Description
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Symmetry Analysis of Differential Equations with Mathematica®

Symmetry Analysis of Differential Equations with Mathematica® PDF Author: Gerd Baumann
Publisher: Springer Science & Business Media
ISBN: 9780387985527
Category : Mathematics
Languages : en
Pages : 540

Book Description
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.

Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications PDF Author: Mark A. Pinsky
Publisher: American Mathematical Soc.
ISBN: 0821868896
Category : Mathematics
Languages : en
Pages : 545

Book Description
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.