Author: Evgeni Gusev
Publisher: Springer
ISBN: 9048138078
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
A NATO Advanced Research Workshop (ARW) entitled “Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators” was held in St. Petersburg, Russia, from June 29 to July 2, 2009. The main goal of the Workshop was to examine (at a fundamental level) the very complex scientific issues that pertain to the use of micro- and nano-electromechanical systems (MEMS and NEMS), devices and technologies in next generation commercial and defen- related applications. Micro- and nano-electromechanical systems represent rather broad and diverse technological areas, such as optical systems (micromirrors, waveguides, optical sensors, integrated subsystems), life sciences and lab equipment (micropumps, membranes, lab-on-chip, membranes, microfluidics), sensors (bio-sensors, chemical sensors, gas-phase sensors, sensors integrated with electronics) and RF applications for signal transmission (variable capacitors, tunable filters and antennas, switches, resonators). From a scientific viewpoint, this is a very multi-disciplinary field, including micro- and nano-mechanics (such as stresses in structural materials), electronic effects (e. g. charge transfer), general electrostatics, materials science, surface chemistry, interface science, (nano)tribology, and optics. It is obvious that in order to overcome the problems surrounding next-generation MEMS/NEMS devices and applications it is necessary to tackle them from different angles: theoreticians need to speak with mechanical engineers, and device engineers and modelers to listen to surface physicists. It was therefore one of the main objectives of the workshop to bring together a multidisciplinary team of distinguished researchers.
Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators
Author: Evgeni Gusev
Publisher: Springer
ISBN: 9048138078
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
A NATO Advanced Research Workshop (ARW) entitled “Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators” was held in St. Petersburg, Russia, from June 29 to July 2, 2009. The main goal of the Workshop was to examine (at a fundamental level) the very complex scientific issues that pertain to the use of micro- and nano-electromechanical systems (MEMS and NEMS), devices and technologies in next generation commercial and defen- related applications. Micro- and nano-electromechanical systems represent rather broad and diverse technological areas, such as optical systems (micromirrors, waveguides, optical sensors, integrated subsystems), life sciences and lab equipment (micropumps, membranes, lab-on-chip, membranes, microfluidics), sensors (bio-sensors, chemical sensors, gas-phase sensors, sensors integrated with electronics) and RF applications for signal transmission (variable capacitors, tunable filters and antennas, switches, resonators). From a scientific viewpoint, this is a very multi-disciplinary field, including micro- and nano-mechanics (such as stresses in structural materials), electronic effects (e. g. charge transfer), general electrostatics, materials science, surface chemistry, interface science, (nano)tribology, and optics. It is obvious that in order to overcome the problems surrounding next-generation MEMS/NEMS devices and applications it is necessary to tackle them from different angles: theoreticians need to speak with mechanical engineers, and device engineers and modelers to listen to surface physicists. It was therefore one of the main objectives of the workshop to bring together a multidisciplinary team of distinguished researchers.
Publisher: Springer
ISBN: 9048138078
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
A NATO Advanced Research Workshop (ARW) entitled “Advanced Materials and Technologies for Micro/Nano Devices, Sensors and Actuators” was held in St. Petersburg, Russia, from June 29 to July 2, 2009. The main goal of the Workshop was to examine (at a fundamental level) the very complex scientific issues that pertain to the use of micro- and nano-electromechanical systems (MEMS and NEMS), devices and technologies in next generation commercial and defen- related applications. Micro- and nano-electromechanical systems represent rather broad and diverse technological areas, such as optical systems (micromirrors, waveguides, optical sensors, integrated subsystems), life sciences and lab equipment (micropumps, membranes, lab-on-chip, membranes, microfluidics), sensors (bio-sensors, chemical sensors, gas-phase sensors, sensors integrated with electronics) and RF applications for signal transmission (variable capacitors, tunable filters and antennas, switches, resonators). From a scientific viewpoint, this is a very multi-disciplinary field, including micro- and nano-mechanics (such as stresses in structural materials), electronic effects (e. g. charge transfer), general electrostatics, materials science, surface chemistry, interface science, (nano)tribology, and optics. It is obvious that in order to overcome the problems surrounding next-generation MEMS/NEMS devices and applications it is necessary to tackle them from different angles: theoreticians need to speak with mechanical engineers, and device engineers and modelers to listen to surface physicists. It was therefore one of the main objectives of the workshop to bring together a multidisciplinary team of distinguished researchers.
Harnessing Bistable Structural Dynamics
Author: Ryan L. Harne
Publisher: John Wiley & Sons
ISBN: 1119128064
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
This book formulates and consolidates a coherent understanding of how harnessing the dynamics of bistable structures may enhance the technical fields of vibration control, energy harvesting, and sensing. Theoretical rigor and practical experimental insights are provided in numerous case studies. The three fields have received significant research interest in recent years, particularly in regards to the advantageous exploitation of nonlinearities. Harnessing the dynamics of bistable structures--that is, systems with two configurations of static equilibria--is a popular subset of the recent efforts. This book provides a timely consolidation of the advancements that are relevant to a large body of active researchers and engineers in these areas of understanding and leveraging nonlinearities for engineering applications. Coverage includes: Provides a one-source reference on how bistable system dynamics may enhance the aims of vibration control, energy harvesting, and sensing with a breadth of case studies Includes details for comprehensive methods of analysis, numerical simulation, and experimentation that are widely useful in the assessment of the dynamics of bistable structures Details approaches to evaluate, by analytical and numerical analysis and experiment, the influences of harmonic and random excitations, multiple degrees-of-freedom, and electromechanical coupling towards tailoring the underlying bistable system dynamics Establishes how intelligently utilizing bistability could enable technology advances that would be useful in various industries, such as automotive engineering, aerospace systems, microsystems and microelectronics, and manufacturing
Publisher: John Wiley & Sons
ISBN: 1119128064
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
This book formulates and consolidates a coherent understanding of how harnessing the dynamics of bistable structures may enhance the technical fields of vibration control, energy harvesting, and sensing. Theoretical rigor and practical experimental insights are provided in numerous case studies. The three fields have received significant research interest in recent years, particularly in regards to the advantageous exploitation of nonlinearities. Harnessing the dynamics of bistable structures--that is, systems with two configurations of static equilibria--is a popular subset of the recent efforts. This book provides a timely consolidation of the advancements that are relevant to a large body of active researchers and engineers in these areas of understanding and leveraging nonlinearities for engineering applications. Coverage includes: Provides a one-source reference on how bistable system dynamics may enhance the aims of vibration control, energy harvesting, and sensing with a breadth of case studies Includes details for comprehensive methods of analysis, numerical simulation, and experimentation that are widely useful in the assessment of the dynamics of bistable structures Details approaches to evaluate, by analytical and numerical analysis and experiment, the influences of harmonic and random excitations, multiple degrees-of-freedom, and electromechanical coupling towards tailoring the underlying bistable system dynamics Establishes how intelligently utilizing bistability could enable technology advances that would be useful in various industries, such as automotive engineering, aerospace systems, microsystems and microelectronics, and manufacturing
Mechanical Domain Parametric Amplification in Multi-degree-of-freedom Systems
Author: Nicholas J. Miller
Publisher:
ISBN:
Category : Electric resonators
Languages : en
Pages : 168
Book Description
Publisher:
ISBN:
Category : Electric resonators
Languages : en
Pages : 168
Book Description
MEMS Linear and Nonlinear Statics and Dynamics
Author: Mohammad I. Younis
Publisher: Springer Science & Business Media
ISBN: 1441960201
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.
Publisher: Springer Science & Business Media
ISBN: 1441960201
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.
Resonant MEMS
Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 352767635X
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.
Publisher: John Wiley & Sons
ISBN: 352767635X
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.
Autoparametric Resonance in Mechanical Systems
Author: Ales Tondl
Publisher: Cambridge University Press
ISBN: 9780521650793
Category : Science
Languages : en
Pages : 210
Book Description
Addresses the causes of and possible solutions to autoparametric resonance in mechanical systems.
Publisher: Cambridge University Press
ISBN: 9780521650793
Category : Science
Languages : en
Pages : 210
Book Description
Addresses the causes of and possible solutions to autoparametric resonance in mechanical systems.
Advances in Nanotechnology Research and Application: 2012 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1464990468
Category : Technology & Engineering
Languages : en
Pages : 14170
Book Description
Advances in Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1464990468
Category : Technology & Engineering
Languages : en
Pages : 14170
Book Description
Advances in Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 854
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 854
Book Description
Developments and Novel Approaches in Biomechanics and Metamaterials
Author: Bilen Emek Abali
Publisher: Springer Nature
ISBN: 3030504646
Category : Science
Languages : en
Pages : 500
Book Description
This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019
Publisher: Springer Nature
ISBN: 3030504646
Category : Science
Languages : en
Pages : 500
Book Description
This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019
Exploring and Exploiting Resonance in Coupled And/or Nonlinear Microelectromechanical Oscillators
Author: Jeffrey F. Rhoads
Publisher:
ISBN:
Category : Microelectromechanical systems
Languages : en
Pages : 320
Book Description
Publisher:
ISBN:
Category : Microelectromechanical systems
Languages : en
Pages : 320
Book Description