Papers in Algebra, Analysis and Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Papers in Algebra, Analysis and Statistics PDF full book. Access full book title Papers in Algebra, Analysis and Statistics by Australian Mathematical Society. Summer Research Institute. Download full books in PDF and EPUB format.

Papers in Algebra, Analysis and Statistics

Papers in Algebra, Analysis and Statistics PDF Author: Australian Mathematical Society. Summer Research Institute
Publisher: American Mathematical Soc.
ISBN: 0821850091
Category : Mathematics
Languages : en
Pages : 418

Book Description


Papers in Algebra, Analysis and Statistics

Papers in Algebra, Analysis and Statistics PDF Author: Australian Mathematical Society. Summer Research Institute
Publisher: American Mathematical Soc.
ISBN: 0821850091
Category : Mathematics
Languages : en
Pages : 418

Book Description


Advances in Algebra and Analysis

Advances in Algebra and Analysis PDF Author: V. Madhu
Publisher: Springer
ISBN: 3030011208
Category : Mathematics
Languages : en
Pages : 473

Book Description
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.

Mathematical Foundations for Data Analysis

Mathematical Foundations for Data Analysis PDF Author: Jeff M. Phillips
Publisher: Springer Nature
ISBN: 3030623416
Category : Mathematics
Languages : en
Pages : 299

Book Description
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Deep Learning and the Game of Go

Deep Learning and the Game of Go PDF Author: Kevin Ferguson
Publisher: Simon and Schuster
ISBN: 1638354014
Category : Computers
Languages : en
Pages : 611

Book Description
Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning

Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering PDF Author: David Ruppert
Publisher: Springer
ISBN: 1493926144
Category : Business & Economics
Languages : en
Pages : 736

Book Description
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians PDF Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1441959459
Category : Business & Economics
Languages : en
Pages : 606

Book Description
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

Beginning Statistics with Data Analysis

Beginning Statistics with Data Analysis PDF Author: Frederick Mosteller
Publisher: Courier Corporation
ISBN: 0486782255
Category : Mathematics
Languages : en
Pages : 612

Book Description
This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.

Algebraic Statistics

Algebraic Statistics PDF Author: Seth Sullivant
Publisher: American Mathematical Soc.
ISBN: 1470435179
Category : Education
Languages : en
Pages : 506

Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

Lectures on Algebraic Statistics

Lectures on Algebraic Statistics PDF Author: Mathias Drton
Publisher: Springer Science & Business Media
ISBN: 3764389052
Category : Mathematics
Languages : en
Pages : 177

Book Description
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.