Author: Bruce J. West
Publisher: Cambridge Scholars Publishing
ISBN: 1527502236
Category : Science
Languages : en
Pages : 331
Book Description
This volume celebrates the over fifty-year career in non-equilibrium statistical physics of Professor Paolo Grigolini of the Center for Nonlinear Science at the University of North Texas. It begins by positioning Grigolini in a five-dimensional science-personality space with the following axes: Sleeper, Keeper, Leaper, Creeper and Reaper. This introduction to the person is followed by a sequence of papers in the various areas of science where his work has had impact, including subtle questions concerned with the connection between classical and quantum systems; a two-level atom coupled to a radiation field; classical probability calculus; anomalous diffusion that is Brownian yet non-Gaussian; a new method for detecting scaling in time series; and the effect of strong Anderson localization on ultrasound transmission, among other topics.
Paolo Grigolini and 50 Years of Statistical Physics
Author: Bruce J. West
Publisher: Cambridge Scholars Publishing
ISBN: 1527502236
Category : Science
Languages : en
Pages : 331
Book Description
This volume celebrates the over fifty-year career in non-equilibrium statistical physics of Professor Paolo Grigolini of the Center for Nonlinear Science at the University of North Texas. It begins by positioning Grigolini in a five-dimensional science-personality space with the following axes: Sleeper, Keeper, Leaper, Creeper and Reaper. This introduction to the person is followed by a sequence of papers in the various areas of science where his work has had impact, including subtle questions concerned with the connection between classical and quantum systems; a two-level atom coupled to a radiation field; classical probability calculus; anomalous diffusion that is Brownian yet non-Gaussian; a new method for detecting scaling in time series; and the effect of strong Anderson localization on ultrasound transmission, among other topics.
Publisher: Cambridge Scholars Publishing
ISBN: 1527502236
Category : Science
Languages : en
Pages : 331
Book Description
This volume celebrates the over fifty-year career in non-equilibrium statistical physics of Professor Paolo Grigolini of the Center for Nonlinear Science at the University of North Texas. It begins by positioning Grigolini in a five-dimensional science-personality space with the following axes: Sleeper, Keeper, Leaper, Creeper and Reaper. This introduction to the person is followed by a sequence of papers in the various areas of science where his work has had impact, including subtle questions concerned with the connection between classical and quantum systems; a two-level atom coupled to a radiation field; classical probability calculus; anomalous diffusion that is Brownian yet non-Gaussian; a new method for detecting scaling in time series; and the effect of strong Anderson localization on ultrasound transmission, among other topics.
Decision Making: A Psychophysics Application Of Network Science
Author: Paolo Grigolini
Publisher: World Scientific
ISBN: 9814458295
Category : Science
Languages : en
Pages : 207
Book Description
This invaluable book captures the proceedings of a workshop that brought together a group of distinguished scientists from a variety of disciplines to discuss how networking influences decision making. The individual lectures interconnect psychological testing, the modeling of neuron networks and brain dynamics to the transport of information within and between complex networks. Of particular importance was the introduction of a new principle that governs how complex networks talk to one another — the Principle of Complexity Management (PCM). PCM establishes that the transfer of information from a stimulating complex network to a responding complex network is determined by how the complexity indices of the two networks are related. The response runs the gamut from being independent of the perturbation to being completely dominated by it, depending on the complexity mismatch.
Publisher: World Scientific
ISBN: 9814458295
Category : Science
Languages : en
Pages : 207
Book Description
This invaluable book captures the proceedings of a workshop that brought together a group of distinguished scientists from a variety of disciplines to discuss how networking influences decision making. The individual lectures interconnect psychological testing, the modeling of neuron networks and brain dynamics to the transport of information within and between complex networks. Of particular importance was the introduction of a new principle that governs how complex networks talk to one another — the Principle of Complexity Management (PCM). PCM establishes that the transfer of information from a stimulating complex network to a responding complex network is determined by how the complexity indices of the two networks are related. The response runs the gamut from being independent of the perturbation to being completely dominated by it, depending on the complexity mismatch.
Networking of Psychophysics, Psychology and Neurophysiology
Author: Bruce J. West
Publisher: Frontiers E-books
ISBN: 2889190803
Category :
Languages : en
Pages : 91
Book Description
To many scientists the gap between the nineteenth century views of consciousness proposed by the psychologist William James and that developed by the inventor of psychophysics Gustav Fechner has never seemed wider. However the twentieth century concept of collective/cooperative behavior within the brain has partially reconciled these diverging perspectives suggesting the notion of consciousness as a physical phenomenon. A kernel of twenty-first century investigators bases their investigations on physiological fluctuations experiments. These fluctuations, although apparently erratic, when analyzed with advanced methods of fractal statistical analysis reveal the emergence of complex behavior, intermediate between complete order and total randomness, a property usually referred to as temporal complexity. Others, with the help of modern technologies, such MRI, establish a more direct analysis of brain dynamics, and focus on the brain’s topological complexity. Consequently the two groups adopt different approaches, the former being based on phenomenological and macroscopic considerations, and the latter resting on the crucial role of neuron interactions. The neurophysiology research work has an increasing overlap with the emerging field of complex networks, whereas the behavior psychology experiments have until recently ignored the complex cooperative dynamics that are proved by increasing experimental evidence to characterize the brain function. It is crucial to examine both the experimental and theoretical studies that support and those that challenge the view that it is an emergent collective property that allows the healthy brain to function. What needs to be discussed are new ways to understand the transport of information through complex networks sharing the same dynamical properties as the brain. In addition we need to understand information transfer between complex networks, say between the brain and a controlled experimental stimulus. Experiments suggest that brain excitation is described by inverse power-law distributions and recent studies in network dynamics indicate that this distribution is the result of phase transitions due to neuron network dynamics. It is important to stress that the development of dynamic networking establishes a connection between topological and temporal complexity, establishing that a scale-free distribution of links is generated by the dynamic correlation between dynamic elements located at very large Euclidean distances from one another. Dynamic networking and dynamics networks suggest a new way to transfer information: the long-distance communication through local cooperative interaction. It is anticipated that the contributed discussions will clarify how the global intelligence of a complex network emerges from the local cooperation of units and the role played by critical phase transitions in the observed persistence of this cooperation.
Publisher: Frontiers E-books
ISBN: 2889190803
Category :
Languages : en
Pages : 91
Book Description
To many scientists the gap between the nineteenth century views of consciousness proposed by the psychologist William James and that developed by the inventor of psychophysics Gustav Fechner has never seemed wider. However the twentieth century concept of collective/cooperative behavior within the brain has partially reconciled these diverging perspectives suggesting the notion of consciousness as a physical phenomenon. A kernel of twenty-first century investigators bases their investigations on physiological fluctuations experiments. These fluctuations, although apparently erratic, when analyzed with advanced methods of fractal statistical analysis reveal the emergence of complex behavior, intermediate between complete order and total randomness, a property usually referred to as temporal complexity. Others, with the help of modern technologies, such MRI, establish a more direct analysis of brain dynamics, and focus on the brain’s topological complexity. Consequently the two groups adopt different approaches, the former being based on phenomenological and macroscopic considerations, and the latter resting on the crucial role of neuron interactions. The neurophysiology research work has an increasing overlap with the emerging field of complex networks, whereas the behavior psychology experiments have until recently ignored the complex cooperative dynamics that are proved by increasing experimental evidence to characterize the brain function. It is crucial to examine both the experimental and theoretical studies that support and those that challenge the view that it is an emergent collective property that allows the healthy brain to function. What needs to be discussed are new ways to understand the transport of information through complex networks sharing the same dynamical properties as the brain. In addition we need to understand information transfer between complex networks, say between the brain and a controlled experimental stimulus. Experiments suggest that brain excitation is described by inverse power-law distributions and recent studies in network dynamics indicate that this distribution is the result of phase transitions due to neuron network dynamics. It is important to stress that the development of dynamic networking establishes a connection between topological and temporal complexity, establishing that a scale-free distribution of links is generated by the dynamic correlation between dynamic elements located at very large Euclidean distances from one another. Dynamic networking and dynamics networks suggest a new way to transfer information: the long-distance communication through local cooperative interaction. It is anticipated that the contributed discussions will clarify how the global intelligence of a complex network emerges from the local cooperation of units and the role played by critical phase transitions in the observed persistence of this cooperation.
Networks of Echoes
Author: Bruce J. West
Publisher: Springer Science & Business Media
ISBN: 3319048791
Category : Science
Languages : en
Pages : 235
Book Description
Networks of Echoes: Imitation, Innovation and Invisible Leaders is a mathematically rigorous and data rich book on a fascinating area of the science and engineering of social webs. There are hundreds of complex network phenomena whose statistical properties are described by inverse power laws. The phenomena of interest are not arcane events that we encounter only fleetingly, but are events that dominate our lives. We examine how this intermittent statistical behavior intertwines itself with what appears to be the organized activity of social groups. The book is structured as answers to a sequence of questions such as: How are decisions reached in elections and boardrooms? How is the stability of a society undermined by zealots and committed minorities and how is that stability re-established? Can we learn to answer such questions about human behavior by studying the way flocks of birds retain their formation when eluding a predator? These questions and others are answered using a generic model of a complex dynamic network—one whose global behavior is determined by a symmetric interaction among individuals based on social imitation. The complexity of the network is manifest in time series resulting from self-organized critical dynamics that have divergent first and second moments, are non-stationary, non-ergodic and non-Poisson. How phase transitions in the network dynamics influence such activity as decision making is a fascinating story and provides a context for introducing many of the mathematical ideas necessary for understanding complex networks in general. The decision making model (DMM) is selected to emphasize that there are features of complex webs that supersede specific mechanisms and need to be understood from a general perspective. This insightful overview of recent tools and their uses may serve as an introduction and curriculum guide in related courses.
Publisher: Springer Science & Business Media
ISBN: 3319048791
Category : Science
Languages : en
Pages : 235
Book Description
Networks of Echoes: Imitation, Innovation and Invisible Leaders is a mathematically rigorous and data rich book on a fascinating area of the science and engineering of social webs. There are hundreds of complex network phenomena whose statistical properties are described by inverse power laws. The phenomena of interest are not arcane events that we encounter only fleetingly, but are events that dominate our lives. We examine how this intermittent statistical behavior intertwines itself with what appears to be the organized activity of social groups. The book is structured as answers to a sequence of questions such as: How are decisions reached in elections and boardrooms? How is the stability of a society undermined by zealots and committed minorities and how is that stability re-established? Can we learn to answer such questions about human behavior by studying the way flocks of birds retain their formation when eluding a predator? These questions and others are answered using a generic model of a complex dynamic network—one whose global behavior is determined by a symmetric interaction among individuals based on social imitation. The complexity of the network is manifest in time series resulting from self-organized critical dynamics that have divergent first and second moments, are non-stationary, non-ergodic and non-Poisson. How phase transitions in the network dynamics influence such activity as decision making is a fascinating story and provides a context for introducing many of the mathematical ideas necessary for understanding complex networks in general. The decision making model (DMM) is selected to emphasize that there are features of complex webs that supersede specific mechanisms and need to be understood from a general perspective. This insightful overview of recent tools and their uses may serve as an introduction and curriculum guide in related courses.
Physical Review
Author:
Publisher:
ISBN:
Category : Fluids
Languages : en
Pages : 1408
Book Description
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Publisher:
ISBN:
Category : Fluids
Languages : en
Pages : 1408
Book Description
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Complex Webs
Author: Bruce J. West
Publisher: Cambridge University Press
ISBN: 1139493779
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Complex Webs synthesises modern mathematical developments with a broad range of complex network applications of interest to the engineer and system scientist, presenting the common principles, algorithms, and tools governing network behaviour, dynamics, and complexity. The authors investigate multiple mathematical approaches to inverse power laws and expose the myth of normal statistics to describe natural and man-made networks. Richly illustrated throughout with real-world examples including cell phone use, accessing the Internet, failure of power grids, measures of health and disease, distribution of wealth, and many other familiar phenomena from physiology, bioengineering, biophysics, and informational and social networks, this book makes thought-provoking reading. With explanations of phenomena, diagrams, end-of-chapter problems, and worked examples, it is ideal for advanced undergraduate and graduate students in engineering and the life, social, and physical sciences. It is also a perfect introduction for researchers who are interested in this exciting new way of viewing dynamic networks.
Publisher: Cambridge University Press
ISBN: 1139493779
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Complex Webs synthesises modern mathematical developments with a broad range of complex network applications of interest to the engineer and system scientist, presenting the common principles, algorithms, and tools governing network behaviour, dynamics, and complexity. The authors investigate multiple mathematical approaches to inverse power laws and expose the myth of normal statistics to describe natural and man-made networks. Richly illustrated throughout with real-world examples including cell phone use, accessing the Internet, failure of power grids, measures of health and disease, distribution of wealth, and many other familiar phenomena from physiology, bioengineering, biophysics, and informational and social networks, this book makes thought-provoking reading. With explanations of phenomena, diagrams, end-of-chapter problems, and worked examples, it is ideal for advanced undergraduate and graduate students in engineering and the life, social, and physical sciences. It is also a perfect introduction for researchers who are interested in this exciting new way of viewing dynamic networks.
Statistical Universals of Language
Author: Kumiko Tanaka-Ishii
Publisher: Springer Nature
ISBN: 3030593770
Category : Mathematics
Languages : en
Pages : 230
Book Description
This volume explores the universal mathematical properties underlying big language data and possible reasons why such properties exist, revealing how we may be unconsciously mathematical in our language use. These properties are statistical and thus different from linguistic universals that contribute to describing the variation of human languages, and they can only be identified over a large accumulation of usages. The book provides an overview of state-of-the art findings on these statistical universals and reconsiders the nature of language accordingly, with Zipf's law as a well-known example. The main focus of the book further lies in explaining the property of long memory, which was discovered and studied more recently by borrowing concepts from complex systems theory. The statistical universals not only possibly lie as the precursor of language system formation, but they also highlight the qualities of language that remain weak points in today's machine learning. In summary, this book provides an overview of language's global properties. It will be of interest to anyone engaged in fields related to language and computing or statistical analysis methods, with an emphasis on researchers and students in computational linguistics and natural language processing. While the book does apply mathematical concepts, all possible effort has been made to speak to a non-mathematical audience as well by communicating mathematical content intuitively, with concise examples taken from real texts.
Publisher: Springer Nature
ISBN: 3030593770
Category : Mathematics
Languages : en
Pages : 230
Book Description
This volume explores the universal mathematical properties underlying big language data and possible reasons why such properties exist, revealing how we may be unconsciously mathematical in our language use. These properties are statistical and thus different from linguistic universals that contribute to describing the variation of human languages, and they can only be identified over a large accumulation of usages. The book provides an overview of state-of-the art findings on these statistical universals and reconsiders the nature of language accordingly, with Zipf's law as a well-known example. The main focus of the book further lies in explaining the property of long memory, which was discovered and studied more recently by borrowing concepts from complex systems theory. The statistical universals not only possibly lie as the precursor of language system formation, but they also highlight the qualities of language that remain weak points in today's machine learning. In summary, this book provides an overview of language's global properties. It will be of interest to anyone engaged in fields related to language and computing or statistical analysis methods, with an emphasis on researchers and students in computational linguistics and natural language processing. While the book does apply mathematical concepts, all possible effort has been made to speak to a non-mathematical audience as well by communicating mathematical content intuitively, with concise examples taken from real texts.
Mathematical Reviews
Empirical Paradox, Complexity Thinking and Generating New Kinds of Knowledge
Author: Paolo Grigolini
Publisher: Cambridge Scholars Publishing
ISBN: 1527535525
Category : Philosophy
Languages : en
Pages : 284
Book Description
Is another world war inevitable? The answer is a resounding “yes” if we continue to think in terms of “either/or” outcomes. Adversaries think in such terms, you either get what you want, or you do not. Can a different way of thinking produce a different outcome? This book shows that the consistency demanded by the linear, logical either/or thinking is disrupted by paradox, whose resolution forces a consequent decision: war or peace, with no middle ground. If this were the only way of thinking then a person would be either a protagonist or an antagonist, but a person can be both, either, or neither; this opens the door to novel solutions. This is “both/and” thinking, which the book shows can be achieved by a dynamic resolution of paradox. Thus, a basically selfish individual can also be a hero; a consequence of the complexity of being human.
Publisher: Cambridge Scholars Publishing
ISBN: 1527535525
Category : Philosophy
Languages : en
Pages : 284
Book Description
Is another world war inevitable? The answer is a resounding “yes” if we continue to think in terms of “either/or” outcomes. Adversaries think in such terms, you either get what you want, or you do not. Can a different way of thinking produce a different outcome? This book shows that the consistency demanded by the linear, logical either/or thinking is disrupted by paradox, whose resolution forces a consequent decision: war or peace, with no middle ground. If this were the only way of thinking then a person would be either a protagonist or an antagonist, but a person can be both, either, or neither; this opens the door to novel solutions. This is “both/and” thinking, which the book shows can be achieved by a dynamic resolution of paradox. Thus, a basically selfish individual can also be a hero; a consequence of the complexity of being human.
Physics of Fractal Operators
Author: Bruce West
Publisher: Springer Science & Business Media
ISBN: 9780387955544
Category : Mathematics
Languages : en
Pages : 376
Book Description
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.
Publisher: Springer Science & Business Media
ISBN: 9780387955544
Category : Mathematics
Languages : en
Pages : 376
Book Description
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.