NASA Grc Stirling Technology Development Overview PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download NASA Grc Stirling Technology Development Overview PDF full book. Access full book title NASA Grc Stirling Technology Development Overview by National Aeronautics and Space Administration (NASA). Download full books in PDF and EPUB format.

NASA Grc Stirling Technology Development Overview

NASA Grc Stirling Technology Development Overview PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721584789
Category :
Languages : en
Pages : 30

Book Description
The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NA

NASA Grc Stirling Technology Development Overview

NASA Grc Stirling Technology Development Overview PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721584789
Category :
Languages : en
Pages : 30

Book Description
The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NA

Overview of NASA Grc Stirling Technology Development

Overview of NASA Grc Stirling Technology Development PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721649464
Category :
Languages : en
Pages : 30

Book Description
The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts. Schreiber, Jeffrey G. and Thieme, Lanny G. Glenn Research Center NASA/TM-2004-212969, AIAA Paper 2003-6

Stirling Technology Development at NASA Grc. Revised

Stirling Technology Development at NASA Grc. Revised PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781724078414
Category : Science
Languages : en
Pages : 32

Book Description
The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss pre

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721781270
Category :
Languages : en
Pages : 30

Book Description
A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2005-213409, E-14924

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721785940
Category :
Languages : en
Pages : 26

Book Description
A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2005-213628, E?15111

NASA GRC Stirling Technology Development Overview

NASA GRC Stirling Technology Development Overview PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description


Overview of NASA Magnet and Linear Alternator Research Efforts

Overview of NASA Magnet and Linear Alternator Research Efforts PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721777648
Category :
Languages : en
Pages : 30

Book Description
The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts. Geng, Steven M. and Schwarze, Gene E. and Nieda, Janis M. Glenn Research Center NASA/TM-2005-213411, STAIF-2005-093, E-14928

Advanced Technology Development for Stirling Convertors

Advanced Technology Development for Stirling Convertors PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721673773
Category :
Languages : en
Pages : 30

Book Description
A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2004-213186, E-14685

Development of a Multi-Bus, Multi-Source Reconfigurable Stirling Radioisotope Power System Test Bed

Development of a Multi-Bus, Multi-Source Reconfigurable Stirling Radioisotope Power System Test Bed PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721677436
Category :
Languages : en
Pages : 30

Book Description
The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division. Coleman, Anthony S. Glenn Research Center NASA/CR-2004-213319, AIAA Paper 2004-5713, E-14779

NASA GRC Technology Development Project for a Stirling Radioisotope Power System

NASA GRC Technology Development Project for a Stirling Radioisotope Power System PDF Author: Lanny G. Thieme
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Book Description