Phase Noise and Frequency Stability in Oscillators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Phase Noise and Frequency Stability in Oscillators PDF full book. Access full book title Phase Noise and Frequency Stability in Oscillators by Enrico Rubiola. Download full books in PDF and EPUB format.

Phase Noise and Frequency Stability in Oscillators

Phase Noise and Frequency Stability in Oscillators PDF Author: Enrico Rubiola
Publisher: Cambridge University Press
ISBN: 9780521153287
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for academic researchers, industry practitioners, and graduate students in RF engineering and communications engineering.

Phase Noise and Frequency Stability in Oscillators

Phase Noise and Frequency Stability in Oscillators PDF Author: Enrico Rubiola
Publisher: Cambridge University Press
ISBN: 9780521153287
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for academic researchers, industry practitioners, and graduate students in RF engineering and communications engineering.

Oscillator Modeling and Phase Noise

Oscillator Modeling and Phase Noise PDF Author: Brian Nguyen Limketkai
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Book Description


The Design of Low Noise Oscillators

The Design of Low Noise Oscillators PDF Author: Ali Hajimiri
Publisher: Springer Science & Business Media
ISBN: 0306481995
Category : Technology & Engineering
Languages : en
Pages : 214

Book Description
It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

Phase Noise in Signal Sources

Phase Noise in Signal Sources PDF Author: W. P. Robins
Publisher: IET
ISBN: 9780863410260
Category : Technology & Engineering
Languages : en
Pages : 340

Book Description
This book contains a thorough treatment of phase noise, its relationship to thermal noise and associated subjects such as frequency stability. The design of low phase noise signal sources, including oscillators and synthesisers, is explained and in many cases the measured phase noise characteristics are compared with the theoretical predictions. Full theoretical treatments are combined with physical explanations, helpful comments, examples of manufactured equipment and practical tips. Overall system performance degradations due to unwanted phase noise are fully analysed for radar systems and for both analogue and digital communications systems. Specifications for the acceptable phase noise performance of signal sources to be used in such systems are derived after allowing for both technical and economic optimisation. The mature engineer whose mathematics may be somewhat rusty will find that every effort has been made to use the lowest level of mathematical sophistication that is compatible with a full analysis and every line of each mathematical argument has been set out so that the book may be read and understood even in an armchair. Due to a novel approach to the analytical treatment of narrow band noise, the book is simple to understand while simultaneously carrying the analysis further in several areas than any existing publication.

Topics in LC Oscillators

Topics in LC Oscillators PDF Author: Konstantinos Manetakis
Publisher: Springer Nature
ISBN: 3031310861
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
This book introduces an intuitive, self-sustained oscillator model and applies it to describe some of the most critical performance metrics of LC oscillators, such as phase noise, entrainment, and pulling. It also covers the related topics of magnetic coupling and inductor design. The author emphasizes the basic principles and illuminates them with approximate calculations, adopting a design-oriented approach that imparts intuition and complements simulations. This book constitutes a novel and fresh perspective on the subject and can be helpful to electrical engineering students and practicing engineers. It also serves as a bridge between the mathematical treatises of the subject and the more practical circuit-oriented approaches.

The Designer's Guide to High-Purity Oscillators

The Designer's Guide to High-Purity Oscillators PDF Author: Emad Eldin Hegazi
Publisher: Springer Science & Business Media
ISBN: 0387233652
Category : Technology & Engineering
Languages : en
Pages : 212

Book Description
try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Accurate oscillator phase-noise simulation is a key problem in MMIC design, which is not solved satisfactory so far and needs further investigation. In this paper, a Ka-band MMIC oscillator with GaInP/GaAs HBT and on-chip resonator is treated as an example. Measured phase noise reaches -90 dBc/Hz and below at 100 kHz offset. To evaluate phase-noise predic-tion, the circuit is simulated using different commercial simulation tools and HBT models. Con-siderable differences in simulation results are observed.

Design, Modeling, and Noise Measurement of Oscillators Using a Large Signal Network Analyzer

Design, Modeling, and Noise Measurement of Oscillators Using a Large Signal Network Analyzer PDF Author: Inwon Suh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract: Oscillators play a crucial role in wireless communication systems since they are used together with mixers for frequency translation. To design discrete oscillators in a more efficient way in terms of output power, a multi-harmonic real-time open-loop active load pull technique was developed and used to find the optimal fundamental and harmonic load impedances. Multi-harmonic loaded load circuits were then designed and implemented to approach the optimal multi-harmonic load impedances and realize a stand-alone oscillator. Then, a new behavioral modeling technique based on power dependent Volterra series was developed to model negative-resistance oscillators. The derived behavioral model predicts the harmonic load-pull behaviors and the output power characteristics of oscillators and assists with the oscillator design. The noise characteristic of oscillator is also of great importance in communication circuits. A new generalized 1/f Kurokawa noise analysis applicable to both low and high Q oscillators is proposed for 1/f phase and amplitude noise. A theoretical correspondence between the new generalized Kurokawa theory and the impulse sensitivity function and the perturbation projection vector analyses is also derived. The proposed generalized Kurokawa theory is then applied to a Van Der Pol oscillator, a BJT Colpitts oscillator and a CMOS ring-oscillator, and a pHEMT oscillator and is verified to yield comparable results to those obtained from the matrix conversion method and the experimental result. Also, an 1/f additive phase noise analysis for the injection-locked oscillator is presented. An additive phase noise measurement system integrated with an LSNA is also developed to effectively acquire the model parameters needed. The validity of the analytic solution is finally verified to yield reasonable agreement to the experimental result. The additive phase noise measurement system integrated with a LSNA and a tunable monochromatic light source is further applied to characterize the additive phase noise performance of the both passivated and unpassivated AlGaN/GaN HEMT at 2 GHz under various operating conditions. Illumination with different photon energies, different drain voltages, and different load impedances are used to probe the dependence of the additive phase noise on the trap and 2DEG population.

The Design of Modern Microwave Oscillators for Wireless Applications

The Design of Modern Microwave Oscillators for Wireless Applications PDF Author: Ulrich L. Rohde
Publisher: John Wiley & Sons
ISBN: 0471727164
Category : Technology & Engineering
Languages : en
Pages : 543

Book Description
Delivering the best possible solution for phase noise and outputpower efficiency in oscillators This complete and thorough analysis of microwave oscillatorsinvestigates all aspects of design, with particular emphasis onoperating conditions, choice of resonators and transistors, phasenoise, and output power. It covers both bipolar transistors andFETs. Following the authors' guidance, readers learn how to designmicrowave oscillators and VCOs that can be tuned over a very widefrequency range, yet have good phase noise, are low cost, and aresmall in size. All the essential topics in oscillator design anddevelopment are covered, including: * Device and resonator technology * Study of noise sources * Analysis methods * Design, calculation, and optimization methodologies * Practical design of single and coupled oscillators While most of the current literature in the field concentrates onclassic design strategies based on measurements, simulation, andoptimization of output power and phase noise, this text offers aunique approach that focuses on the complete understanding of thedesign process. The material demonstrates important design rulesstarting with the selection of best oscillator topology, choice oftransistors, and complete phase noise analysis that leads tooptimum performance of all relevant oscillator features. Alsoincluded are CMOS oscillators, which recently have become importantin cellular applications. For readers interested in specializedapplications and topics, a full chapter provides all the necessaryreferences. The contents of the text fall into two major categories: * Chapters 1 through 9 deal with a very detailed and expandedsingle resonator oscillator, including a thorough treatment of bothnonlinear analysis and phase noise * Chapters 10 and 11 use the knowledge obtained and apply it tomultiple coupled oscillators (synchronized oscillators) This text is partially based on research sponsored by the DefenseAdvanced Research Projects Agency (DARPA) and the United StatesArmy and conducted by Synergy Microwave Corporation. With thewealth of information provided for the analysis and practicaldesign of single and synchronized low-noise microwave oscillators,it is recommended reading for all RF microwave engineers. Inaddition, the text's comprehensive, step-by-step approach makes itan excellent graduate-level textbook.

Design of High-Performance CMOS Voltage-Controlled Oscillators

Design of High-Performance CMOS Voltage-Controlled Oscillators PDF Author: Liang Dai
Publisher: Springer Science & Business Media
ISBN: 1461511453
Category : Technology & Engineering
Languages : en
Pages : 170

Book Description
Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.