Author: Pavel Pták
Publisher: Springer
ISBN: 0792312074
Category : Science
Languages : en
Pages : 212
Book Description
Orthomodular Structures as Quantum Logics
Author: Pavel Pták
Publisher: Springer
ISBN: 0792312074
Category : Science
Languages : en
Pages : 212
Book Description
Publisher: Springer
ISBN: 0792312074
Category : Science
Languages : en
Pages : 212
Book Description
Sources of Quantum Mechanics
Author: B. L. Van Der Waerden
Publisher: Courier Corporation
ISBN: 048645892X
Category : Science
Languages : en
Pages : 450
Book Description
Originally published: Amsterdam: North-Holland Pub. Co., 1967.
Publisher: Courier Corporation
ISBN: 048645892X
Category : Science
Languages : en
Pages : 450
Book Description
Originally published: Amsterdam: North-Holland Pub. Co., 1967.
Handbook of Quantum Logic and Quantum Structures
Author: Kurt Engesser
Publisher: Elsevier
ISBN: 008055038X
Category : Mathematics
Languages : en
Pages : 821
Book Description
Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled "The logic of quantum mechanics quantum logic, i.e. the logical investigation of quantum mechanics, has undergone an enormous development. Various schools of thought and approaches have emerged and there are a variety of technical results.Quantum logic is a heterogeneous field of research ranging from investigations which may be termed logical in the traditional sense to studies focusing on structures which are on the border between algebra and logic. For the latter structures the term quantum structures is appropriate. The chapters of this Handbook, which are authored by the most eminent scholars in the field, constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic and quantum structures. Much of the material presented is of recent origin representing the frontier of the subject. The present volume focuses on quantum structures. Among the structures studied extensively in this volume are, just to name a few, Hilbert lattices, D-posets, effect algebras MV algebras, partially ordered Abelian groups and those structures underlying quantum probability.- Written by eminent scholars in the field of logic- A comprehensive presentation of the theory, approaches and results in the field of quantum logic- Volume focuses on quantum structures
Publisher: Elsevier
ISBN: 008055038X
Category : Mathematics
Languages : en
Pages : 821
Book Description
Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled "The logic of quantum mechanics quantum logic, i.e. the logical investigation of quantum mechanics, has undergone an enormous development. Various schools of thought and approaches have emerged and there are a variety of technical results.Quantum logic is a heterogeneous field of research ranging from investigations which may be termed logical in the traditional sense to studies focusing on structures which are on the border between algebra and logic. For the latter structures the term quantum structures is appropriate. The chapters of this Handbook, which are authored by the most eminent scholars in the field, constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic and quantum structures. Much of the material presented is of recent origin representing the frontier of the subject. The present volume focuses on quantum structures. Among the structures studied extensively in this volume are, just to name a few, Hilbert lattices, D-posets, effect algebras MV algebras, partially ordered Abelian groups and those structures underlying quantum probability.- Written by eminent scholars in the field of logic- A comprehensive presentation of the theory, approaches and results in the field of quantum logic- Volume focuses on quantum structures
Reasoning in Quantum Theory
Author: Maria Luisa Dalla Chiara
Publisher: Springer Science & Business Media
ISBN: 9781402019784
Category : Mathematics
Languages : en
Pages : 326
Book Description
"Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.
Publisher: Springer Science & Business Media
ISBN: 9781402019784
Category : Mathematics
Languages : en
Pages : 326
Book Description
"Is quantum logic really logic?" This book argues for a positive answer to this question once and for all. There are many quantum logics and their structures are delightfully varied. The most radical aspect of quantum reasoning is reflected in unsharp quantum logics, a special heterodox branch of fuzzy thinking. For the first time, the whole story of Quantum Logic is told; from its beginnings to the most recent logical investigations of various types of quantum phenomena, including quantum computation. Reasoning in Quantum Theory is designed for logicians, yet amenable to advanced graduate students and researchers of other disciplines.
Quantum Logic in Algebraic Approach
Author: Miklós Rédei
Publisher: Springer Science & Business Media
ISBN: 9401590265
Category : Science
Languages : en
Pages : 244
Book Description
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
Publisher: Springer Science & Business Media
ISBN: 9401590265
Category : Science
Languages : en
Pages : 244
Book Description
This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
The Logic of Quantum Mechanics: Volume 15
Author: Enrico G. Beltrametti
Publisher: Cambridge University Press
ISBN: 9780521168496
Category : Mathematics
Languages : en
Pages : 340
Book Description
This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.
Publisher: Cambridge University Press
ISBN: 9780521168496
Category : Mathematics
Languages : en
Pages : 340
Book Description
This volume examines the logic, theory and mathematics of quantum mechanics in a clear and thorough way.
Categorical Quantum Models and Logics
Author: Chris Heunen
Publisher: Amsterdam University Press
ISBN: 9085550246
Category : Mathematics
Languages : en
Pages : 214
Book Description
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-
Publisher: Amsterdam University Press
ISBN: 9085550246
Category : Mathematics
Languages : en
Pages : 214
Book Description
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-
Fundamental Mathematical Structures of Quantum Theory
Author: Valter Moretti
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Mathematical Foundations of Quantum Theory
Author: A.R. Marlow
Publisher: Elsevier
ISBN: 0323141188
Category : Science
Languages : en
Pages : 383
Book Description
Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.
Publisher: Elsevier
ISBN: 0323141188
Category : Science
Languages : en
Pages : 383
Book Description
Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.
Quantum Measure Theory
Author: J. Hamhalter
Publisher: Springer Science & Business Media
ISBN: 9401701199
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book is the first systematic treatment of measures on projection lattices of von Neumann algebras. It presents significant recent results in this field. One part is inspired by the Generalized Gleason Theorem on extending measures on the projection lattices of von Neumann algebras to linear functionals. Applications of this principle to various problems in quantum physics are considered (hidden variable problem, Wigner type theorems, decoherence functional, etc.). Another part of the monograph deals with a fascinating interplay of algebraic properties of the projection lattice with the continuity of measures (the analysis of Jauch-Piron states, independence conditions in quantum field theory, etc.). These results have no direct analogy in the standard measure and probability theory. On the theoretical physics side, they are instrumental in recovering technical assumptions of the axiomatics of quantum theories only by considering algebraic properties of finitely additive measures (states) on quantum propositions.
Publisher: Springer Science & Business Media
ISBN: 9401701199
Category : Mathematics
Languages : en
Pages : 412
Book Description
This book is the first systematic treatment of measures on projection lattices of von Neumann algebras. It presents significant recent results in this field. One part is inspired by the Generalized Gleason Theorem on extending measures on the projection lattices of von Neumann algebras to linear functionals. Applications of this principle to various problems in quantum physics are considered (hidden variable problem, Wigner type theorems, decoherence functional, etc.). Another part of the monograph deals with a fascinating interplay of algebraic properties of the projection lattice with the continuity of measures (the analysis of Jauch-Piron states, independence conditions in quantum field theory, etc.). These results have no direct analogy in the standard measure and probability theory. On the theoretical physics side, they are instrumental in recovering technical assumptions of the axiomatics of quantum theories only by considering algebraic properties of finitely additive measures (states) on quantum propositions.