Author: Enrique Castillo
Publisher: John Wiley & Sons
ISBN: 1118031148
Category : Mathematics
Languages : en
Pages : 422
Book Description
A unique, applied approach to problem solving in linearalgebra Departing from the standard methods of analysis, this unique bookpresents methodologies and algorithms based on the concept oforthogonality and demonstrates their application to both standardand novel problems in linear algebra. Covering basic theory oflinear systems, linear inequalities, and linear programming, itfocuses on elegant, computationally simple solutions to real-worldphysical, economic, and engineering problems. The authors clearlyexplain the reasons behind the analysis of different structures andconcepts and use numerous illustrative examples to correlate themathematical models to the reality they represent. Readers aregiven precise guidelines for: * Checking the equivalence of two systems * Solving a system in certain selected variables * Modifying systems of equations * Solving linear systems of inequalities * Using the new exterior point method * Modifying a linear programming problem With few prerequisites, but with plenty of figures and tables,end-of-chapter exercises as well as Java and Mathematica programsavailable from the authors' Web site, this is an invaluabletext/reference for mathematicians, engineers, applied scientists,and graduate students in mathematics.
Orthogonal Sets and Polar Methods in Linear Algebra
Author: Enrique Castillo
Publisher: John Wiley & Sons
ISBN: 1118031148
Category : Mathematics
Languages : en
Pages : 422
Book Description
A unique, applied approach to problem solving in linearalgebra Departing from the standard methods of analysis, this unique bookpresents methodologies and algorithms based on the concept oforthogonality and demonstrates their application to both standardand novel problems in linear algebra. Covering basic theory oflinear systems, linear inequalities, and linear programming, itfocuses on elegant, computationally simple solutions to real-worldphysical, economic, and engineering problems. The authors clearlyexplain the reasons behind the analysis of different structures andconcepts and use numerous illustrative examples to correlate themathematical models to the reality they represent. Readers aregiven precise guidelines for: * Checking the equivalence of two systems * Solving a system in certain selected variables * Modifying systems of equations * Solving linear systems of inequalities * Using the new exterior point method * Modifying a linear programming problem With few prerequisites, but with plenty of figures and tables,end-of-chapter exercises as well as Java and Mathematica programsavailable from the authors' Web site, this is an invaluabletext/reference for mathematicians, engineers, applied scientists,and graduate students in mathematics.
Publisher: John Wiley & Sons
ISBN: 1118031148
Category : Mathematics
Languages : en
Pages : 422
Book Description
A unique, applied approach to problem solving in linearalgebra Departing from the standard methods of analysis, this unique bookpresents methodologies and algorithms based on the concept oforthogonality and demonstrates their application to both standardand novel problems in linear algebra. Covering basic theory oflinear systems, linear inequalities, and linear programming, itfocuses on elegant, computationally simple solutions to real-worldphysical, economic, and engineering problems. The authors clearlyexplain the reasons behind the analysis of different structures andconcepts and use numerous illustrative examples to correlate themathematical models to the reality they represent. Readers aregiven precise guidelines for: * Checking the equivalence of two systems * Solving a system in certain selected variables * Modifying systems of equations * Solving linear systems of inequalities * Using the new exterior point method * Modifying a linear programming problem With few prerequisites, but with plenty of figures and tables,end-of-chapter exercises as well as Java and Mathematica programsavailable from the authors' Web site, this is an invaluabletext/reference for mathematicians, engineers, applied scientists,and graduate students in mathematics.
Computational Methods of Linear Algebra
Author: Granville Sewell
Publisher: John Wiley & Sons
ISBN: 0471742139
Category : Mathematics
Languages : en
Pages : 284
Book Description
Learn to write programs to solve linear algebraic problems The Second Edition of this popular textbook provides a highly accessible introduction to the numerical solution of linear algebraic problems. Readers gain a solid theoretical foundation for all the methods discussed in the text and learn to write FORTRAN90 and MATLAB(r) programs to solve problems. This new edition is enhanced with new material and pedagogical tools, reflecting the author's hands-on teaching experience, including: * A new chapter covering modern supercomputing and parallel programming * Fifty percent more examples and exercises that help clarify theory and demonstrate real-world applications * MATLAB(r) versions of all the FORTRAN90 programs * An appendix with answers to selected problems The book starts with basic definitions and results from linear algebra that are used as a foundation for later chapters. The following four chapters present and analyze direct and iterative methods for the solution of linear systems of equations, linear least-squares problems, linear eigenvalue problems, and linear programming problems. Next, a chapter is devoted to the fast Fourier transform, a topic not often covered by comparable texts. The final chapter features a practical introduction to writing computational linear algebra software to run on today's vector and parallel supercomputers. Highlighted are double-precision FORTRAN90 subroutines that solve the problems presented in the text. The subroutines are carefully documented and readable, allowing students to follow the program logic from start to finish. MATLAB(r) versions of the codes are listed in an appendix. Machine-readable copies of the FORTRAN90 and MATLAB(r) codes can be downloaded from the text's accompanying Web site. With its clear style and emphasis on problem solving, this is a superior textbook for upper-level undergraduates and graduate students.
Publisher: John Wiley & Sons
ISBN: 0471742139
Category : Mathematics
Languages : en
Pages : 284
Book Description
Learn to write programs to solve linear algebraic problems The Second Edition of this popular textbook provides a highly accessible introduction to the numerical solution of linear algebraic problems. Readers gain a solid theoretical foundation for all the methods discussed in the text and learn to write FORTRAN90 and MATLAB(r) programs to solve problems. This new edition is enhanced with new material and pedagogical tools, reflecting the author's hands-on teaching experience, including: * A new chapter covering modern supercomputing and parallel programming * Fifty percent more examples and exercises that help clarify theory and demonstrate real-world applications * MATLAB(r) versions of all the FORTRAN90 programs * An appendix with answers to selected problems The book starts with basic definitions and results from linear algebra that are used as a foundation for later chapters. The following four chapters present and analyze direct and iterative methods for the solution of linear systems of equations, linear least-squares problems, linear eigenvalue problems, and linear programming problems. Next, a chapter is devoted to the fast Fourier transform, a topic not often covered by comparable texts. The final chapter features a practical introduction to writing computational linear algebra software to run on today's vector and parallel supercomputers. Highlighted are double-precision FORTRAN90 subroutines that solve the problems presented in the text. The subroutines are carefully documented and readable, allowing students to follow the program logic from start to finish. MATLAB(r) versions of the codes are listed in an appendix. Machine-readable copies of the FORTRAN90 and MATLAB(r) codes can be downloaded from the text's accompanying Web site. With its clear style and emphasis on problem solving, this is a superior textbook for upper-level undergraduates and graduate students.
Principles of Linear Algebra with Mathematica
Author: Kenneth M. Shiskowski
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Publisher: John Wiley & Sons
ISBN: 1118627261
Category : Mathematics
Languages : en
Pages : 624
Book Description
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings, and the commands required to solve complex and computationally challenging problems using Mathematica are provided. The book begins with an introduction to the commands and programming guidelines for working with Mathematica. Next, the authors explore linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics, such as vectors, dot product, cross product, and vector projection are explored, as well as a unique variety of more advanced topics including rotations in space, 'rolling' a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, with an exploration of their effect on arclength, area, and volume, least squares fits, and pseudoinverses. Mathematica is used to enhance concepts and is seamlessly integrated throughout the book through symbolic manipulations, numerical computations, graphics in two and three dimensions, animations, and programming. Each section concludes with standard problems in addition to problems that were specifically designed to be solved with Mathematica, allowing readers to test their comprehension of the presented material. All related Mathematica code is available on a corresponding website, along with solutions to problems and additional topical resources. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Mathematica is an excellent book for courses on linear algebra at the undergraduate level. The book is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Mathematica to solve linear algebra problems.
Partial Differential Equations and the Finite Element Method
Author: Pavel Ŝolín
Publisher: John Wiley & Sons
ISBN: 0471764094
Category : Mathematics
Languages : en
Pages : 505
Book Description
A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
Publisher: John Wiley & Sons
ISBN: 0471764094
Category : Mathematics
Languages : en
Pages : 505
Book Description
A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.
Mathematical Methods in Biology
Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470525878
Category : Science
Languages : en
Pages : 437
Book Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
Publisher: John Wiley & Sons
ISBN: 0470525878
Category : Science
Languages : en
Pages : 437
Book Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
Post-Modern Algebra
Author: Jonathan D. H. Smith
Publisher: John Wiley & Sons
ISBN: 1118030834
Category : Mathematics
Languages : en
Pages : 386
Book Description
Advanced algebra in the service of contemporary mathematicalresearch-- a unique introduction. This volume takes an altogether new approach to advanced algebra.Its intriguing title, inspired by the term postmodernism, denotes adeparture from van der Waerden's Modern Algebra--a book that hasdominated the field for nearly seventy years. Post-Modern Algebraoffers a truly up-to-date alternative to the standard approach,explaining topics from an applications-based perspective ratherthan by abstract principles alone. The book broadens the field ofstudy to include algebraic structures and methods used in currentand emerging mathematical research, and describes the powerful yetsubtle techniques of universal algebra and category theory.Classical algebraic areas of groups, rings, fields, and vectorspaces are bolstered by such topics as ordered sets, monoids,monoid actions, quasigroups, loops, lattices, Boolean algebras,categories, and Heyting algebras. The text features: * A clear and concise treatment at an introductory level, tested inuniversity courses. * A wealth of exercises illustrating concepts and their practicalapplication. * Effective techniques for solving research problems in the realworld. * Flexibility of presentation, making it easy to tailor material tospecific needs. * Help with elementary proofs and algebraic notations for studentsof varying abilities. Post-Modern Algebra is an excellent primary or supplementary textfor graduate-level algebra courses. It is also an extremely usefulresource for professionals and researchers in many areas who musttackle abstract, linear, or universal algebra in the course oftheir work.
Publisher: John Wiley & Sons
ISBN: 1118030834
Category : Mathematics
Languages : en
Pages : 386
Book Description
Advanced algebra in the service of contemporary mathematicalresearch-- a unique introduction. This volume takes an altogether new approach to advanced algebra.Its intriguing title, inspired by the term postmodernism, denotes adeparture from van der Waerden's Modern Algebra--a book that hasdominated the field for nearly seventy years. Post-Modern Algebraoffers a truly up-to-date alternative to the standard approach,explaining topics from an applications-based perspective ratherthan by abstract principles alone. The book broadens the field ofstudy to include algebraic structures and methods used in currentand emerging mathematical research, and describes the powerful yetsubtle techniques of universal algebra and category theory.Classical algebraic areas of groups, rings, fields, and vectorspaces are bolstered by such topics as ordered sets, monoids,monoid actions, quasigroups, loops, lattices, Boolean algebras,categories, and Heyting algebras. The text features: * A clear and concise treatment at an introductory level, tested inuniversity courses. * A wealth of exercises illustrating concepts and their practicalapplication. * Effective techniques for solving research problems in the realworld. * Flexibility of presentation, making it easy to tailor material tospecific needs. * Help with elementary proofs and algebraic notations for studentsof varying abilities. Post-Modern Algebra is an excellent primary or supplementary textfor graduate-level algebra courses. It is also an extremely usefulresource for professionals and researchers in many areas who musttackle abstract, linear, or universal algebra in the course oftheir work.
Positive Linear Systems
Author: Lorenzo Farina
Publisher: John Wiley & Sons
ISBN: 111803127X
Category : Mathematics
Languages : en
Pages : 322
Book Description
A complete study on an important class of linear dynamicalsystems-positive linear systems One of the most often-encountered systems in nearly all areas ofscience and technology, positive linear systems is a specific butremarkable and fascinating class. Renowned scientists LorenzoFarina and Sergio Rinaldi introduce readers to the world ofpositive linear systems in their rigorous but highly accessiblebook, rich in applications, examples, and figures. This professional reference is divided into three main parts: Thefirst part contains the definitions and basic properties ofpositive linear systems. The second part, following the theoreticalexposition, reports the main conceptual results, consideringapplicable examples taken from a number of widely used models. Thethird part is devoted to the study of some classes of positivelinear systems of particular relevance in applications (such as theLeontief model, the Leslie model, the Markov chains, thecompartmental systems, and the queueing systems). Readers familiarwith linear algebra and linear systems theory will appreciate theway arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systemsfeatures: * Applications from a variety of backgrounds including modeling,control engineering, computer science, demography, economics,bioengineering, chemistry, and ecology * References and annotated bibliographies throughout the book * Two appendices concerning linear algebra and linear systemstheory for readers unfamiliar with the mathematics used Farina and Rinaldi make no effort to hide their enthusiasm for thetopics presented, making Positive Linear Systems: Theory andApplications an indispensable resource for researchers andprofessionals in a broad range of fields.
Publisher: John Wiley & Sons
ISBN: 111803127X
Category : Mathematics
Languages : en
Pages : 322
Book Description
A complete study on an important class of linear dynamicalsystems-positive linear systems One of the most often-encountered systems in nearly all areas ofscience and technology, positive linear systems is a specific butremarkable and fascinating class. Renowned scientists LorenzoFarina and Sergio Rinaldi introduce readers to the world ofpositive linear systems in their rigorous but highly accessiblebook, rich in applications, examples, and figures. This professional reference is divided into three main parts: Thefirst part contains the definitions and basic properties ofpositive linear systems. The second part, following the theoreticalexposition, reports the main conceptual results, consideringapplicable examples taken from a number of widely used models. Thethird part is devoted to the study of some classes of positivelinear systems of particular relevance in applications (such as theLeontief model, the Leslie model, the Markov chains, thecompartmental systems, and the queueing systems). Readers familiarwith linear algebra and linear systems theory will appreciate theway arguments are treated and presented. Extraordinarily comprehensive, Positive Linear Systemsfeatures: * Applications from a variety of backgrounds including modeling,control engineering, computer science, demography, economics,bioengineering, chemistry, and ecology * References and annotated bibliographies throughout the book * Two appendices concerning linear algebra and linear systemstheory for readers unfamiliar with the mathematics used Farina and Rinaldi make no effort to hide their enthusiasm for thetopics presented, making Positive Linear Systems: Theory andApplications an indispensable resource for researchers andprofessionals in a broad range of fields.
Linear and Nonlinear Waves
Author: G. B. Whitham
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Publisher: John Wiley & Sons
ISBN: 1118031202
Category : Science
Languages : en
Pages : 660
Book Description
Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.
Advanced Fixture Design Method and Its Application
Author: Guohua Qin
Publisher: Springer Nature
ISBN: 9813344938
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book uses kinematics, mechanics, mathematics, and so on, to systematically propose the fixturing performance evaluation and fixturing layout planning method. The proposed method is a novel method, including the analysis method of locating determination, the analysis method of workpiece stability, the analysis method of clamping reasonability, the analysis method of workpiece attachment/detachment, the analysis method of locating accuracy, and the planning algorithm of locating point layout, the planning algorithm of clamping force, and so forth. It can enrich and develop the basic theory of computer aided fixture design, change the empirical method of fixture design. The combination of theoretical analysis and mathematical modeling technology can resolve the key problems in the process of fixture design, which will play a certain role in promoting the progress of manufacturing technology, improving the precision and level of product manufacturing, and meeting the higher and higher requirements of mechanical manufacturing industry.
Publisher: Springer Nature
ISBN: 9813344938
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book uses kinematics, mechanics, mathematics, and so on, to systematically propose the fixturing performance evaluation and fixturing layout planning method. The proposed method is a novel method, including the analysis method of locating determination, the analysis method of workpiece stability, the analysis method of clamping reasonability, the analysis method of workpiece attachment/detachment, the analysis method of locating accuracy, and the planning algorithm of locating point layout, the planning algorithm of clamping force, and so forth. It can enrich and develop the basic theory of computer aided fixture design, change the empirical method of fixture design. The combination of theoretical analysis and mathematical modeling technology can resolve the key problems in the process of fixture design, which will play a certain role in promoting the progress of manufacturing technology, improving the precision and level of product manufacturing, and meeting the higher and higher requirements of mechanical manufacturing industry.
Decomposition Techniques in Mathematical Programming
Author: Antonio J. Conejo
Publisher: Springer Science & Business Media
ISBN: 3540276866
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.
Publisher: Springer Science & Business Media
ISBN: 3540276866
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.