Author: Leo Michelis
Publisher: London, Ont. : Department of Economics, University of Western Ontario
ISBN:
Category : Econometric models
Languages : en
Pages : 36
Book Description
Non-nested Pretest Tests
Author: Leo Michelis
Publisher: London, Ont. : Department of Economics, University of Western Ontario
ISBN:
Category : Econometric models
Languages : en
Pages : 36
Book Description
Publisher: London, Ont. : Department of Economics, University of Western Ontario
ISBN:
Category : Econometric models
Languages : en
Pages : 36
Book Description
Journal of Quantitative Economics
JOURNAL OF ECONOMETRICS
Author: THE JOURNAL OF ECONOMETRICS
Publisher:
ISBN:
Category :
Languages : en
Pages : 426
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 426
Book Description
The Linear Model and Hypothesis
Author: George Seber
Publisher: Springer
ISBN: 3319219308
Category : Mathematics
Languages : en
Pages : 208
Book Description
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involvematrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality to other models in the analysis of variance, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
Publisher: Springer
ISBN: 3319219308
Category : Mathematics
Languages : en
Pages : 208
Book Description
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involvematrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality to other models in the analysis of variance, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
Bootstrap Tests for Regression Models
Author: L. Godfrey
Publisher: Springer
ISBN: 0230233732
Category : Business & Economics
Languages : en
Pages : 342
Book Description
An accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
Publisher: Springer
ISBN: 0230233732
Category : Business & Economics
Languages : en
Pages : 342
Book Description
An accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
Statistical Theory and Method Abstracts
Statistical Methods in Biology
Author: S.J. Welham
Publisher: CRC Press
ISBN: 1439808783
Category : Mathematics
Languages : en
Pages : 606
Book Description
Written in simple language with relevant examples, Statistical Methods in Biology: Design and Analysis of Experiments and Regression is a practical and illustrative guide to the design of experiments and data analysis in the biological and agricultural sciences. The book presents statistical ideas in the context of biological and agricultural sciences to which they are being applied, drawing on relevant examples from the authors’ experience. Taking a practical and intuitive approach, the book only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat® statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R. By the time you reach the end of the book (and online material) you will have gained: A clear appreciation of the importance of a statistical approach to the design of your experiments, A sound understanding of the statistical methods used to analyse data obtained from designed experiments and of the regression approaches used to construct simple models to describe the observed response as a function of explanatory variables, Sufficient knowledge of how to use one or more statistical packages to analyse data using the approaches described, and most importantly, An appreciation of how to interpret the results of these statistical analyses in the context of the biological or agricultural science within which you are working. The book concludes with a guide to practical design and data analysis. It gives you the understanding to better interact with consultant statisticians and to identify statistical approaches to add value to your scientific research.
Publisher: CRC Press
ISBN: 1439808783
Category : Mathematics
Languages : en
Pages : 606
Book Description
Written in simple language with relevant examples, Statistical Methods in Biology: Design and Analysis of Experiments and Regression is a practical and illustrative guide to the design of experiments and data analysis in the biological and agricultural sciences. The book presents statistical ideas in the context of biological and agricultural sciences to which they are being applied, drawing on relevant examples from the authors’ experience. Taking a practical and intuitive approach, the book only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat® statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R. By the time you reach the end of the book (and online material) you will have gained: A clear appreciation of the importance of a statistical approach to the design of your experiments, A sound understanding of the statistical methods used to analyse data obtained from designed experiments and of the regression approaches used to construct simple models to describe the observed response as a function of explanatory variables, Sufficient knowledge of how to use one or more statistical packages to analyse data using the approaches described, and most importantly, An appreciation of how to interpret the results of these statistical analyses in the context of the biological or agricultural science within which you are working. The book concludes with a guide to practical design and data analysis. It gives you the understanding to better interact with consultant statisticians and to identify statistical approaches to add value to your scientific research.
Biostatistical Design and Analysis Using R
Author: Dr Murray Logan
Publisher: John Wiley & Sons
ISBN: 144436247X
Category : Science
Languages : en
Pages : 578
Book Description
R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
Publisher: John Wiley & Sons
ISBN: 144436247X
Category : Science
Languages : en
Pages : 578
Book Description
R — the statistical and graphical environment is rapidly emerging as an important set of teaching and research tools for biologists. This book draws upon the popularity and free availability of R to couple the theory and practice of biostatistics into a single treatment, so as to provide a textbook for biologists learning statistics, R, or both. An abridged description of biostatistical principles and analysis sequence keys are combined together with worked examples of the practical use of R into a complete practical guide to designing and analyzing real biological research. Topics covered include: simple hypothesis testing, graphing exploratory data analysis and graphical summaries regression (linear, multi and non-linear) simple and complex ANOVA and ANCOVA designs (including nested, factorial, blocking, spit-plot and repeated measures) frequency analysis and generalized linear models. Linear mixed effects modeling is also incorporated extensively throughout as an alternative to traditional modeling techniques. The book is accompanied by a companion website www.wiley.com/go/logan/r with an extensive set of resources comprising all R scripts and data sets used in the book, additional worked examples, the biology package, and other instructional materials and links.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574
Book Description
Applied Stochastic Modelling
Author: Byron J.T. Morgan
Publisher: CRC Press
ISBN: 1420011650
Category : Mathematics
Languages : en
Pages : 363
Book Description
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and
Publisher: CRC Press
ISBN: 1420011650
Category : Mathematics
Languages : en
Pages : 363
Book Description
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and