Applications and Computation of Orthogonal Polynomials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Applications and Computation of Orthogonal Polynomials PDF full book. Access full book title Applications and Computation of Orthogonal Polynomials by Walter Gautschi. Download full books in PDF and EPUB format.

Applications and Computation of Orthogonal Polynomials

Applications and Computation of Orthogonal Polynomials PDF Author: Walter Gautschi
Publisher: Birkhäuser
ISBN: 3034886853
Category : Technology & Engineering
Languages : en
Pages : 275

Book Description
This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.

Applications and Computation of Orthogonal Polynomials

Applications and Computation of Orthogonal Polynomials PDF Author: Walter Gautschi
Publisher: Birkhäuser
ISBN: 3034886853
Category : Technology & Engineering
Languages : en
Pages : 275

Book Description
This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.

Orthogonal Polynomials

Orthogonal Polynomials PDF Author: Gabor Szegš
Publisher: American Mathematical Soc.
ISBN: 0821810235
Category : Mathematics
Languages : en
Pages : 448

Book Description
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

Classical and Quantum Orthogonal Polynomials in One Variable

Classical and Quantum Orthogonal Polynomials in One Variable PDF Author: Mourad Ismail
Publisher: Cambridge University Press
ISBN: 9780521782012
Category : Mathematics
Languages : en
Pages : 748

Book Description
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.

Orthogonal Polynomials of Several Variables

Orthogonal Polynomials of Several Variables PDF Author: Charles F. Dunkl
Publisher: Cambridge University Press
ISBN: 1107071895
Category : Mathematics
Languages : en
Pages : 439

Book Description
Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.

An Introduction to Orthogonal Polynomials

An Introduction to Orthogonal Polynomials PDF Author: Theodore S Chihara
Publisher: Courier Corporation
ISBN: 0486479293
Category : Mathematics
Languages : en
Pages : 276

Book Description
"This concise introduction covers general elementary theory related to orthogonal polynomials and assumes only a first undergraduate course in real analysis. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some specific systems of orthogonal polynomials. 1978 edition"--

Orthogonal Polynomials and Continued Fractions

Orthogonal Polynomials and Continued Fractions PDF Author: S. V. Khrushchev
Publisher:
ISBN: 9781107101586
Category : Continued fractions
Languages : en
Pages : 478

Book Description
"This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum."--Publisher's description.

Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions PDF Author: Richard Askey
Publisher: SIAM
ISBN: 0898710189
Category : Mathematics
Languages : en
Pages : 115

Book Description
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.

Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions PDF Author: Francisco Marcellàn
Publisher: Springer Science & Business Media
ISBN: 3540310622
Category : Mathematics
Languages : en
Pages : 432

Book Description
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.

Orthogonal Polynomials

Orthogonal Polynomials PDF Author: Mama Foupouagnigni
Publisher: Springer Nature
ISBN: 3030367444
Category : Mathematics
Languages : en
Pages : 683

Book Description
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.

Orthogonal Polynomials on the Unit Circle

Orthogonal Polynomials on the Unit Circle PDF Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 0821848631
Category : Mathematics
Languages : en
Pages : 498

Book Description
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szego's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by $z$ (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.