Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells PDF full book. Access full book title Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells by Yuxiu Liu. Download full books in PDF and EPUB format.

Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells

Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells PDF Author: Yuxiu Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Book Description


Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells

Organic/inorganic Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells PDF Author: Yuxiu Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Book Description


Organic-Inorganic Composite Polymer Electrolyte Membranes

Organic-Inorganic Composite Polymer Electrolyte Membranes PDF Author: Dr Inamuddin
Publisher: Springer
ISBN: 3319527398
Category : Technology & Engineering
Languages : en
Pages : 474

Book Description
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic–inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.

Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells PDF Author: Javaid Zaidi
Publisher: Springer Science & Business Media
ISBN: 0387735321
Category : Science
Languages : en
Pages : 439

Book Description
From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

Membranes for Low Temperature Fuel Cells

Membranes for Low Temperature Fuel Cells PDF Author: Surbhi Sharma
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311064732X
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
Membranes for Low Temperature Fuel Cells provides a comprehensive review of novel and state-of-the-art polymer electrolyte membrane fuel cells (PEMFC) membranes. The author highlights requirements and considerations for a membrane as an integral part of PEMFC and its interactions with other components. It is an indispensible resource for anyone interested in new PEMFC membrane materials and concerned with the development, optimisation and testing of such membranes. Various composite membranes (polymer and non-polymer) are discussed along with analyses of the latest fi ller materials like graphene, ionic liquids, polymeric ionic liquids, nanostructured metal oxides and membrane concepts unfolding in the field of PEMFC. This book provides the latest academic and technical developments in PEMFC membranes with thorough insights into various preparation, characterisation, and testing methods utilised. Factors affecting proton conduction, water adsorption, and transportation behaviour of membranes are also deliberated upon. Provides the latest academic and technical developments in PEMFC membranes. Reviews recent literature on ex situ studies and in situ single-cell and stack tests investigating the durability (chemical, thermomechanical) and degradation of membranes. Surbhi Sharma, MSc, PhD Working on graphene oxide and fuel cells since 2007, she has published about 50 research articles/book chapters and holds a patent. She has also been awarded various research grants.

High Temperature Polymer Electrolyte Membrane Fuel Cells

High Temperature Polymer Electrolyte Membrane Fuel Cells PDF Author: Qingfeng Li
Publisher: Springer
ISBN: 3319170821
Category : Technology & Engineering
Languages : en
Pages : 561

Book Description
This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Membranes for Energy Conversion

Membranes for Energy Conversion PDF Author: Klaus-Viktor Peinemann
Publisher: John Wiley & Sons
ISBN: 3527622241
Category : Technology & Engineering
Languages : en
Pages : 304

Book Description
Focusing on recent developments in innovative energy conversion, this second volume features emerging applications with the capacity to transform the entire energy economy. Specific examples include the development of sulfonated polyarylether-type polymers as proton exchange membranes for high- and medium-temperature polymer electrode fuel cells (PEFC), with an entire section devoted to the rapidly expanding field of materials development for solid oxide fuel cells (SOFC). The result is a detailed and invaluable source of information for those involved in the chemical, material science and engineering fields of power generation.

Organic-inorganic Composite Membranes For Molecular Separation

Organic-inorganic Composite Membranes For Molecular Separation PDF Author: Wanqin Jin
Publisher: World Scientific
ISBN: 1786342936
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description
This book gives comprehensive information on the design, preparation and application of organic-inorganic composite membranes that are used for molecular separation. Various membrane types with different materials are highlighted, including polymer/ceramic composite membranes, mixed matrix membranes, metal-organic frameworks membranes and graphene-based membranes. Physical and chemical properties, morphologies, interfacial behaviors, transport characteristics and separation performance of the organic-inorganic composite membranes are thoroughly discussed based on advanced characterization techniques.Meanwhile, the book contains several typical applications of the membranes in fields such as bio-fuels production, organic compounds recovery, solvent dehydration, carbon dioxide capture and others. In addition, large-scale production and industrial implementation of the organic-inorganic composite membranes are briefly introduced.

Stabilized Composite Membranes and Membrane Electrode Assemblies for High Temperature/low Relative Humidity Polymer Electrolyte Fuel Cell Operation

Stabilized Composite Membranes and Membrane Electrode Assemblies for High Temperature/low Relative Humidity Polymer Electrolyte Fuel Cell Operation PDF Author: Vijay Krishna Ramani
Publisher:
ISBN:
Category :
Languages : en
Pages : 368

Book Description


PEM Fuel Cells

PEM Fuel Cells PDF Author: Yun Wang
Publisher: Momentum Press
ISBN: 1606502476
Category : Technology & Engineering
Languages : en
Pages : 450

Book Description
Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.

Development of Inorganic and Organic/inorganic Membranes for Direct Methanol Fuel Cell Application

Development of Inorganic and Organic/inorganic Membranes for Direct Methanol Fuel Cell Application PDF Author: Touhami Mokrani
Publisher:
ISBN:
Category : Fuel cells
Languages : en
Pages : 480

Book Description
A fuel cell is an energy device that converts chemical energy to electrical energy. Low temperature fuel cells, namely the hydrogen fuel cell and the direct methanol fuel cell are preferred amongst other fuel cell types for stationary and vehicular applications, due to their small size and their low operating temperature. The direct methanol fuel cell has several advantages over the hydrogen fuel cell including ease of transport and storage since methanol is a liquid. Since methanol is used directly in the cell there is no need for a reforming process, which results in a less complicated system. However, direct methanol fuel cell are in their infancy and many problems need to be overcome before reaching commercialization. The direct methanol fuel cell has several disadvantages, namely, the sluggish methanol oxidation reaction, the high cost of state-of-the-art proton exchange membranes, the high methanol permeability from anode to cathode and the dependence on the conductivity on membrane water content, which limits their use to temperatures below the boiling point of water, while the need is to work at high temperatures. Attempts to overcome the disadvantages of the state-of-the-art membrane were made in this study, including the development on novel proton exchange membranes and also the modification of existing state-of-the-art membranes.