Author: Tsit-Yuen Lam
Publisher: American Mathematical Soc.
ISBN: 0821807021
Category : Mathematics
Languages : en
Pages : 158
Book Description
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.
Orderings, Valuations and Quadratic Forms
Author: Tsit-Yuen Lam
Publisher: American Mathematical Soc.
ISBN: 0821807021
Category : Mathematics
Languages : en
Pages : 158
Book Description
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.
Publisher: American Mathematical Soc.
ISBN: 0821807021
Category : Mathematics
Languages : en
Pages : 158
Book Description
Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.
Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Recent Advances in Real Algebraic Geometry and Quadratic Forms
Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 0821851543
Category : Mathematics
Languages : en
Pages : 416
Book Description
The papers collected here present an up-to-date record of the current research developments in the fields of real algebraic geometry and quadratic forms. Articles range from the technical to the expository and there are also indications to new research directions.
Publisher: American Mathematical Soc.
ISBN: 0821851543
Category : Mathematics
Languages : en
Pages : 416
Book Description
The papers collected here present an up-to-date record of the current research developments in the fields of real algebraic geometry and quadratic forms. Articles range from the technical to the expository and there are also indications to new research directions.
$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras
Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458
Book Description
Volume 2 of two - also available in a set of both volumes.
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458
Book Description
Volume 2 of two - also available in a set of both volumes.
Valuations, Orderings, and Milnor $K$-Theory
Author: Ido Efrat
Publisher: American Mathematical Soc.
ISBN: 082184041X
Category : Mathematics
Languages : en
Pages : 305
Book Description
This monograph is a comprehensive exposition of the modern theory of valued and ordered fields. It presents the classical aspects of such fields: their arithmetic, topology, and Galois theory. Deeper cohomological aspects are studied in its last part in an elementary manner. This is done by means of the newly developed theory of generalized Milnor $K$-rings. The book emphasizes the close connections and interplay between valuations and orderings, and to a large extent, studies themin a unified manner. The presentation is almost entirely self-contained. In particular, the text develops the needed machinery of ordered abelian groups. This is then used throughout the text to replace the more classical techniques of commutative algebra. Likewise, the book provides an introductionto the Milnor $K$-theory. The reader is introduced to the valuation-theoretic techniques as used in modern Galois theory, especially in applications to birational anabelian geometry, where one needs to detect valuations from their ``cohomological footprints''. These powerful techniques are presented here for the first time in a unified and elementary way.
Publisher: American Mathematical Soc.
ISBN: 082184041X
Category : Mathematics
Languages : en
Pages : 305
Book Description
This monograph is a comprehensive exposition of the modern theory of valued and ordered fields. It presents the classical aspects of such fields: their arithmetic, topology, and Galois theory. Deeper cohomological aspects are studied in its last part in an elementary manner. This is done by means of the newly developed theory of generalized Milnor $K$-rings. The book emphasizes the close connections and interplay between valuations and orderings, and to a large extent, studies themin a unified manner. The presentation is almost entirely self-contained. In particular, the text develops the needed machinery of ordered abelian groups. This is then used throughout the text to replace the more classical techniques of commutative algebra. Likewise, the book provides an introductionto the Milnor $K$-theory. The reader is introduced to the valuation-theoretic techniques as used in modern Galois theory, especially in applications to birational anabelian geometry, where one needs to detect valuations from their ``cohomological footprints''. These powerful techniques are presented here for the first time in a unified and elementary way.
Quadratic Forms -- Algebra, Arithmetic, and Geometry
Author: Ricardo Baeza
Publisher: American Mathematical Soc.
ISBN: 0821846485
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume presents a collection of articles that are based on talks delivered at the International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms held in Frutillar, Chile in December 2007. The theory of quadratic forms is closely connected with a broad spectrum of areas in algebra and number theory. The articles in this volume deal mainly with questions from the algebraic, geometric, arithmetic, and analytic theory of quadratic forms, and related questions in algebraic group theory and algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821846485
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume presents a collection of articles that are based on talks delivered at the International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms held in Frutillar, Chile in December 2007. The theory of quadratic forms is closely connected with a broad spectrum of areas in algebra and number theory. The articles in this volume deal mainly with questions from the algebraic, geometric, arithmetic, and analytic theory of quadratic forms, and related questions in algebraic group theory and algebraic geometry.
Valuation Theory and Its Applications
Author: Franz-Viktor Kuhlmann
Publisher: American Mathematical Soc.
ISBN: 9780821871393
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.
Publisher: American Mathematical Soc.
ISBN: 9780821871393
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.
The Algebraic Theory of Quadratic Forms
Author: Tsit-Yuen Lam
Publisher: Addison-Wesley
ISBN: 9780805356663
Category : Mathematics
Languages : en
Pages : 344
Book Description
Publisher: Addison-Wesley
ISBN: 9780805356663
Category : Mathematics
Languages : en
Pages : 344
Book Description
Introduction to Quadratic Forms over Fields
Author: Tsit-Yuen Lam
Publisher: American Mathematical Soc.
ISBN: 0821810952
Category : Mathematics
Languages : en
Pages : 577
Book Description
This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.
Publisher: American Mathematical Soc.
ISBN: 0821810952
Category : Mathematics
Languages : en
Pages : 577
Book Description
This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.
Compositions of Quadratic Forms
Author: Daniel B. Shapiro
Publisher: Walter de Gruyter
ISBN: 3110824833
Category : Mathematics
Languages : en
Pages : 433
Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Publisher: Walter de Gruyter
ISBN: 3110824833
Category : Mathematics
Languages : en
Pages : 433
Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)