Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation PDF full book. Access full book title Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation by Sam C. Colachis (IV). Download full books in PDF and EPUB format.

Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation

Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation PDF Author: Sam C. Colachis (IV)
Publisher:
ISBN:
Category : Brain-computer interfaces
Languages : en
Pages : 107

Book Description
Approximately 285,000 people are living with a Spinal Cord Injury (SCI) in the United States alone and there are about 17,500 additional cases each year. Over half of these SCI cases result in tetraplegia, which impairs quality of life and requires the need for self-care assistance. Individuals with tetraplegia identify restoration of hand function as a critical, unmet need to regain their independence and improve quality of life. Brain-Computer Interface (BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need by reconnecting the brain with paralyzed limbs to restore function. There are multiple groups working to develop BCIs for SCI applications and incredible progress has been accomplished. However, there is still a substantial amount of research and development required to optimize the technology in order for people with tetraplegia to integrate the neurorehabilitation devices into their daily lives. The work presented in this thesis aims to (I) translate BCI- FES technology from research devices to clinical neuroprosthetics, (II) enhance decoder performance through optimal selection of neurally separable hand functions, and (III) improve neurorehabilitation BCI-FES systems through integration of error-based feedback. Three studies were conducted with a tetraplegic participant using an intracortically-controlled, transcutaneous FES system designed for motor recovery to address each aim. We demonstrate that (I) our BCI-FES system can enable seven functional, skilled hand grasps that can generate adequate force to manipulate everyday objects with high-precision and naturalist speed, (II) stable representations of different hand movements can form in a very small area of the motor cortex and discriminability between these neural representations can affect decoder performance, and (III) information regarding mismatches between motor intention and muscle activation in a tetraplegic participant using a BCI-FES is expressed through single unit activity in the hand region of the motor cortex and is detectable with machine learning algorithms. This work improves upon the state-of-the-art for neurorehabilitation assistive devices and provides insight for developing methods to further optimize BCI performance.

Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation

Optimizing the Brain-computer Interface for Spinal Cord Injury Rehabilitation PDF Author: Sam C. Colachis (IV)
Publisher:
ISBN:
Category : Brain-computer interfaces
Languages : en
Pages : 107

Book Description
Approximately 285,000 people are living with a Spinal Cord Injury (SCI) in the United States alone and there are about 17,500 additional cases each year. Over half of these SCI cases result in tetraplegia, which impairs quality of life and requires the need for self-care assistance. Individuals with tetraplegia identify restoration of hand function as a critical, unmet need to regain their independence and improve quality of life. Brain-Computer Interface (BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need by reconnecting the brain with paralyzed limbs to restore function. There are multiple groups working to develop BCIs for SCI applications and incredible progress has been accomplished. However, there is still a substantial amount of research and development required to optimize the technology in order for people with tetraplegia to integrate the neurorehabilitation devices into their daily lives. The work presented in this thesis aims to (I) translate BCI- FES technology from research devices to clinical neuroprosthetics, (II) enhance decoder performance through optimal selection of neurally separable hand functions, and (III) improve neurorehabilitation BCI-FES systems through integration of error-based feedback. Three studies were conducted with a tetraplegic participant using an intracortically-controlled, transcutaneous FES system designed for motor recovery to address each aim. We demonstrate that (I) our BCI-FES system can enable seven functional, skilled hand grasps that can generate adequate force to manipulate everyday objects with high-precision and naturalist speed, (II) stable representations of different hand movements can form in a very small area of the motor cortex and discriminability between these neural representations can affect decoder performance, and (III) information regarding mismatches between motor intention and muscle activation in a tetraplegic participant using a BCI-FES is expressed through single unit activity in the hand region of the motor cortex and is detectable with machine learning algorithms. This work improves upon the state-of-the-art for neurorehabilitation assistive devices and provides insight for developing methods to further optimize BCI performance.

Brain–Computer Interfaces

Brain–Computer Interfaces PDF Author: Cesar Marquez-Chin
Publisher: Springer Nature
ISBN: 3031016084
Category : Science
Languages : en
Pages : 133

Book Description
Stroke and spinal cord injury often result in paralysis with serious negative consequences to the independence and quality of life of those who sustain them. For these individuals, rehabilitation provides the means to regain lost function. Rehabilitation following neurological injuries has undergone revolutionary changes, enriched by neuroplasticity. Neuroplastic-based interventions enhance the efficacy and continue to guide the development of new rehabilitation strategies. This book presents three important technology-based rehabilitation interventions that follow the concepts of neuroplasticity. The book also discusses clinical results related to their efficacy. These interventions are: functional electrical stimulation therapy, which produces coordinated muscle contractions allowing people with paralysis to perform functional movements with rich sensory feedback; robot-assisted therapy, which uses robots to assist, resist, and guide movements with increased intensity while also reducing the physical burden on therapists; and brain–computer interfaces, which make it possible to verify the presence of motor-related brain activity during rehabilitation. Further, the book presents the combined use of these three technologies to illustrate some of the emerging approaches to the neurorehabilitation of voluntary movement. The authors share their practical experiences obtained during the development and clinical testing of functional electrical stimulation therapy controlled by a brain–computer interface as an intervention to restore reaching and grasping.

Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury

Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury PDF Author: Gernot Müller-Putz
Publisher: Springer Nature
ISBN: 3030685454
Category : Medical
Languages : en
Pages : 377

Book Description
This book provides a comprehensive overview of the current state of the art of practical applications of neuroprosthesis based on functional electrical stimulation for restoration of motor functions lost by spinal cord injury and discusses the use of brain-computer interfaces for their control. The book covers numerous topics starting with basics about spinal cord injury, electrical stimulation, electrical brain signals and brain-computer interfaces. It continues with an overview of neuroprosthetic solutions for different purposes and non-invasive and invasive brain-computer interface implementations and presents clinical use cases and practical applications of BCIs. Finally, the authors give an outlook on cutting edge research with a high potential for clinical translation in the near future. All authors committed themselves to use easy-to-understand language and to avoid very specific information, focusing instead on the essential aspects. This makes this book an ideal choice not only for researchers and clinicians at all stages of their education interested in the topic of brain-computer interface-controlled neuroprostheses, but also for end users and their caregivers who want to inform themselves about the current technological possibilities to improve paralyzed motor functions.

Brain-Computer Interfaces

Brain-Computer Interfaces PDF Author: Cesar Marquez-Chin
Publisher:
ISBN: 9781636391335
Category :
Languages : en
Pages : 133

Book Description
Stroke and spinal cord injury often result in paralysis with serious negative consequences to the independence and quality of life of those who sustain them. For these individuals, rehabilitation provides the means to regain lost function. Rehabilitation following neurological injuries has undergone revolutionary changes, enriched by neuroplasticity. Neuroplastic-based interventions enhance the efficacy and continue to guide the development of new rehabilitation strategies. This book presents three important technology-based rehabilitation interventions that follow the concepts of neuroplasticity. The book also discusses clinical results related to their efficacy. These interventions are: functional electrical stimulation therapy, which produces coordinated muscle contractions allowing people with paralysis to perform functional movements with rich sensory feedback; robot-assisted therapy, which uses robots to assist, resist, and guide movements with increased intensity while also reducing the physical burden on therapists; and brain-computer interfaces, which make it possible to verify the presence of motor-related brain activity during rehabilitation. Further, the book presents the combined use of these three technologies to illustrate some of the emerging approaches to the neurorehabilitation of voluntary movement. The authors share their practical experiences obtained during the development and clinical testing of functional electrical stimulation therapy controlled by a brain-computer interface as an intervention to restore reaching and grasping.

Neurorehabilitation Technology

Neurorehabilitation Technology PDF Author: David J. Reinkensmeyer
Publisher: Springer Nature
ISBN: 3031089952
Category : Medical
Languages : en
Pages : 771

Book Description
This revised, updated, and substantially expanded third edition provides an accessible, practical overview of major areas of research, technical development and clinical application in the field of neurorehabilitation movement therapy. The initial section provides the basic framework and a rationale for technology application in movement therapy by summarizing recent findings in neuroplasticity and motor learning. The following section provides a detailed overview of the movement physiology of various neurologic conditions, illustrating how this knowledge has been used to design various neurorehabilitation technologies. The third section then explains the principles of human-machine interaction for movement rehabilitation. The fourth section provides an overview of assessment technology and predictive modeling in neurorehabilitation. The fifth section provides a survey of technological approaches to neurorehabilitation, including spinal cord stimulation, functional electrical stimulation, virtual reality, wearable sensing, brain computer interfaces, mobile technologies, and telerehabilitation. The final two sections examine in greater detail the ongoing revolution in robotic therapy for upper extremity movement and walking, respectively. The promises and limitations of these technologies in neurorehabilitation are discussed, including an Epilogue which debates the impact and utility of robotics for neurorehabilitation. Throughout the book the chapters provide detailed practical information on state-of-the-art clinical applications of these devices following stroke, spinal cord injury, and other neurologic disorders and future developments in the field. The text is illustrated throughout with photographs and schematic diagrams which serve to clarify the information for the reader. Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields. Chapter “Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility

Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility PDF Author: Enrique Hortal
Publisher: Springer
ISBN: 3319957058
Category : Technology & Engineering
Languages : en
Pages : 118

Book Description
This book reports on the development of different control tools for Brain-machine interface-based assistance and rehabilitation. Brain activity is analyzed with the purpose of classify mental tasks and detecting movement intentions in patients with impaired motility. Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) are detected. Throughout this book, different control systems are presented and validated. This thesis, examined at the Miguel Hernández University of Elche, Spain, in 2016, received the award for best thesis in bioengineering from the Bioengineering group of the Spanish Committee of Automatic Control (CEA) in 2017.

Neuroethics in Practice

Neuroethics in Practice PDF Author: Anjan Chatterjee
Publisher: Oxford University Press, USA
ISBN: 0195389786
Category : Medical
Languages : en
Pages : 291

Book Description
This book explores relevant questions within this multi-faceted and rapidly growing field, and will help to define and foster scholarship within the intersection of neuroethics and clinical neuroscience.

Deep Learning in Brain-Computer Interface

Deep Learning in Brain-Computer Interface PDF Author: Minkyu Ahn
Publisher: Frontiers Media SA
ISBN: 2889763285
Category : Science
Languages : en
Pages : 147

Book Description


Neuroergonomics

Neuroergonomics PDF Author: Chang S. Nam
Publisher: Springer Nature
ISBN: 3030347842
Category : Technology & Engineering
Languages : en
Pages : 472

Book Description
This book sums up key research findings, and theoretical and technological advances having a direct bearing on neuroergonomics. Neuroergonomics is an emerging area whose Neuroergonomics is an emerging area that is collectively defined as the study of human brain function and behaviour in relation to behavioural performance in natural environments and everyday settings. It helps readers to understand neural mechanisms of human cognition in the context of human interaction with complex systems, as well as understanding the change of perception, decision-making and training in humans. The authors give new insights into augmenting human performance, reflecting upon the opportunities provided through neuroergonomics research and development. Computer systems acting on data from behavioural-output, physiological, and neurological sensing technologies are used to determine the user’s cognitive state and adapt the systems to change, support, and monitor human cognition. Various domains and case studies delve into the field of neuroergonomics in detail. These include, but are not limited to: an evaluation of technologies in health, workplace, and education settings, to show the different impacts of neuroergonomics in everyday lives; assessment of real-time cognitive measures; dynamic casual interactions between inhibition and updating functions, through analysis of behavioral, neurophysiological and effective connectivity metrics; and applications in human performance modelling and assessment of mental workload, showing the reader how to train and improve working memory capacity. Neuroergonomics: Principles and Practice provides academic practitioners and graduate students with a single go-to handbook that will be of significant assistance in research associated with human factors and ergonomics, human-computer interaction, human-systems engineering and cognitive neuroscience.

Rehabilitation Robotics: Challenges in Design, Control, and Real Applications

Rehabilitation Robotics: Challenges in Design, Control, and Real Applications PDF Author: Francisco Romero Sánchez
Publisher: Frontiers Media SA
ISBN: 2889768813
Category : Science
Languages : en
Pages : 229

Book Description