Optimized System Identification PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimized System Identification PDF full book. Access full book title Optimized System Identification by Jer-Nan Juang. Download full books in PDF and EPUB format.

Optimized System Identification

Optimized System Identification PDF Author: Jer-Nan Juang
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 38

Book Description
In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.

Optimized System Identification

Optimized System Identification PDF Author: Jer-Nan Juang
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 38

Book Description
In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.

Optimal Experiment Design for Dynamic System Identification

Optimal Experiment Design for Dynamic System Identification PDF Author: M B Zarrop
Publisher: Springer
ISBN: 9783662194072
Category :
Languages : en
Pages : 212

Book Description


Nonlinear System Identification

Nonlinear System Identification PDF Author: Oliver Nelles
Publisher: Springer Science & Business Media
ISBN: 3662043238
Category : Technology & Engineering
Languages : en
Pages : 785

Book Description
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.

Optimal Measurement Methods for Distributed Parameter System Identification

Optimal Measurement Methods for Distributed Parameter System Identification PDF Author: Dariusz Ucinski
Publisher: CRC Press
ISBN: 0203026780
Category : Mathematics
Languages : en
Pages : 390

Book Description
For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.

Control, Identification, and Input Optimization

Control, Identification, and Input Optimization PDF Author: Robert Kalaba
Publisher: Springer Science & Business Media
ISBN: 1468476629
Category : Mathematics
Languages : en
Pages : 429

Book Description
This book is a self-contained text devoted to the numerical determination of optimal inputs for system identification. It presents the current state of optimal inputs with extensive background material on optimization and system identification. The field of optimal inputs has been an area of considerable research recently with important advances by R. Mehra, G. c. Goodwin, M. Aoki, and N. E. Nahi, to name just a few eminent in vestigators. The authors' interest in optimal inputs first developed when F. E. Yates, an eminent physiologist, expressed the need for optimal or preferred inputs to estimate physiological parameters. The text assumes no previous knowledge of optimal control theory, numerical methods for solving two-point boundary-value problems, or system identification. As such it should be of interest to students as well as researchers in control engineering, computer science, biomedical en gineering, operations research, and economics. In addition the sections on beam theory should be of special interest to mechanical and civil en gineers and the sections on eigenvalues should be of interest to numerical analysts. The authors have tried to present a balanced viewpoint; however, primary emphasis is on those methods in which they have had first-hand experience. Their work has been influenced by many authors. Special acknowledgment should go to those listed above as well as R. Bellman, A. Miele, G. A. Bekey, and A. P. Sage. The book can be used for a two-semester course in control theory, system identification, and optimal inputs.

Filtering and System Identification

Filtering and System Identification PDF Author: Michel Verhaegen
Publisher: Cambridge University Press
ISBN: 9781107405028
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Linear Parameter-varying System Identification

Linear Parameter-varying System Identification PDF Author: Paulo Lopes dos Santos
Publisher: World Scientific
ISBN: 9814355445
Category : Mathematics
Languages : en
Pages : 402

Book Description
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--

Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification PDF Author: Fouad Giri
Publisher: Springer Science & Business Media
ISBN: 1849965129
Category : Technology & Engineering
Languages : en
Pages : 425

Book Description
Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.

System Identification

System Identification PDF Author: Rik Pintelon
Publisher: John Wiley & Sons
ISBN: 0471660957
Category : Science
Languages : en
Pages : 644

Book Description
Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

System Identification

System Identification PDF Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.