OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS. PDF full book. Access full book title OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS. by . Download full books in PDF and EPUB format.

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS.

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Book Description
A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS.

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Book Description
A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Influence of Permeability Anisotropy and Reservoir Heterogeneity on Optimization of Infill Drilling in Naturally Fractured Tight-gas Mesaverde Sandstone Reservoirs, San Juan Basin

Influence of Permeability Anisotropy and Reservoir Heterogeneity on Optimization of Infill Drilling in Naturally Fractured Tight-gas Mesaverde Sandstone Reservoirs, San Juan Basin PDF Author: Hamoud K. H. Al-Hadrami
Publisher:
ISBN:
Category : Oil reservoir engineering
Languages : en
Pages : 176

Book Description


Optimazation of hydraulic fracturing in tight gas reservoirs with alternative fluid

Optimazation of hydraulic fracturing in tight gas reservoirs with alternative fluid PDF Author: Faisal Mehmood
Publisher: Cuvillier Verlag
ISBN: 3736964722
Category : Technology & Engineering
Languages : en
Pages : 160

Book Description
Due to the finite nature of petroleum resources and depletion of conventional reservoirs, the exploitation of unconventional resources has been a key to meeting world energy needs. Natural gas, a cleaner fossil fuel compared to oil and coal, has an increasing role in the energy mix. It is expected that the peak global natural gas production will remain between 3.7-6.1 trillion m3 per year between 2019 and 2060. Therefore, addressing the technical challenges posed by reservoir exploitation technologies in an environmentally responsible manner is critical for efficient energy production and energy secure of the world.

Naturally Fractured Tight Gas Reservoir Detection Optimization

Naturally Fractured Tight Gas Reservoir Detection Optimization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Evaluating Factors Controlling Damage and Productivity in Tight Gas Reservoirs

Evaluating Factors Controlling Damage and Productivity in Tight Gas Reservoirs PDF Author: Nick Bahrami
Publisher: Springer Science & Business Media
ISBN: 3319024817
Category : Technology & Engineering
Languages : en
Pages : 66

Book Description
Tight gas reservoirs have very low permeability and porosity, which cannot be produced at economical flow rates unless the well is efficiently stimulated and completed using advanced and optimized technologies. Economical production on the basis of tight gas reservoirs is challenging in general, not only due to their very low permeability but also to several different forms of formation damage that can occur during drilling, completion, stimulation, and production operations. This study demonstrates in detail the effects of different well and reservoir static and dynamic parameters that influence damage mechanisms and well productivity in tight gas reservoirs. Geomechanics, petrophysics, production and reservoir engineering expertise for reservoir characterization is combined with a reservoir simulation approach and core analysis experiments to understand the optimum strategy for tight gas development, delivering improved well productivity and gas recovery.

Automated Optimization Strategies for Horizontal Wellbore and Hydraulic Fracture Stages Placement in Unconventional Gas Reseroirs

Automated Optimization Strategies for Horizontal Wellbore and Hydraulic Fracture Stages Placement in Unconventional Gas Reseroirs PDF Author: Tatyana Plaksina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In the last decades rapid advances in horizontal drilling and hydraulic fracturing technologies ensure production of commercial quantities of natural gas from many unconventional reservoirs. Reservoir management and development strategies for shale and tight gas plays have evolved from ad hoc approaches to more rigorous strategies that involve numerical optimization in presence of multiple economic and production objectives and constraints. Application of an automated integrated optimization framework for placement of horizontal wellbores and transverse hydraulic fracture stages along them has potential of increasing shale gas reserves and projects' revenue even further. This dissertation introduces a novel integrated evolutionary-based optimization framework for placement of horizontal wellbores and hydraulic fracture stages that allows enhancing production from shale gas formations and provides a solid foundation for future field-scale application once better understanding of shale petrophysics and geomechanics is developed. The proposed optimization workflow is developed and tested in stages. First, we summarize what has been done in the subject field previously by scholars and identify what is missing. Second, we present assumptions for the shale gas simulation model that make our framework and the simulation model applicable. Third, we pre-screen several economic and petrophysical parameters in order to identify the most significant for the subsequent sensitivities analysis. Forth, we develop evolutionary-based optimization strategy for placement of hydraulic fracture stages along a single horizontal wellbore. We investigate how sensitive the optimization results to changes in the key parameters pre-selected during pre-screening. Fifth, we enhance the framework to handle multiple horizontal producers, discuss the conditions when such approach is applicable, and extensively test this integrated workflow on a suite of simulation runs. Finally, we implement and apply multi-objective optimization approach (the improved non-dominated sorting genetic algorithm) to the problem of optimal HF stage placement in shale gas reservoirs and analyze the efficiency of our evolutionary-based optimization scheme in presence of multiple conflicting or non-conflicting objectives. Based on our extensive testing and rigorous formulation of the optimization problem, we find that the chosen evolutionary framework is effective in calculating the optimal number of horizontal wells, the number of HF stages, their specific locations along the wells as well as their half-length. We also conclude that further computational efficiency can be achieved if minimum stage spacing and same chromosome elimination procedure are used. The multi-objective approach has been tested on conflicting and non-conflicting objectives and proved to compute the Pareto optimal front of solutions (or production scenarios) in computationally efficient manner. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155086

Unconventional Reservoirs: Rate and Pressure Transient Analysis Techniques

Unconventional Reservoirs: Rate and Pressure Transient Analysis Techniques PDF Author: Amin Taghavinejad
Publisher: Springer Nature
ISBN: 3030828379
Category : Technology & Engineering
Languages : en
Pages : 119

Book Description
This book provides a succinct overview on the application of rate and pressure transient analysis in unconventional petroleum reservoirs. It begins by introducing unconventional reservoirs, including production challenges, and continues to explore the potential benefits of rate and pressure analysis methods. Rate transient analysis (RTA) and pressure transient analysis (PTA) are techniques for evaluating petroleum reservoir properties such as permeability, original hydrocarbon in-place, and hydrocarbon recovery using dynamic data. The brief introduces, describes and classifies both techniques, focusing on the application to shale and tight reservoirs. Authors have used illustrations, schematic views, and mathematical formulations and code programs to clearly explain application of RTA and PTA in complex petroleum systems. This brief is of an interest to academics, reservoir engineers and graduate students.

Unconventional Oil and Gas Resources Handbook

Unconventional Oil and Gas Resources Handbook PDF Author: Y Zee Ma
Publisher: Gulf Professional Publishing
ISBN: 0128025360
Category : Technology & Engineering
Languages : en
Pages : 552

Book Description
Unconventional Oil and Gas Resources Handbook: Evaluation and Development is a must-have, helpful handbook that brings a wealth of information to engineers and geoscientists. Bridging between subsurface and production, the handbook provides engineers and geoscientists with effective methodology to better define resources and reservoirs. Better reservoir knowledge and innovative technologies are making unconventional resources economically possible, and multidisciplinary approaches in evaluating these resources are critical to successful development. Unconventional Oil and Gas Resources Handbook takes this approach, covering a wide range of topics for developing these resources including exploration, evaluation, drilling, completion, and production. Topics include theory, methodology, and case histories and will help to improve the understanding,integrated evaluation, and effective development of unconventional resources. Presents methods for a full development cycle of unconventional resources, from exploration through production Explores multidisciplinary integrations for evaluation and development of unconventional resources and covers a broad range of reservoir characterization methods and development scenarios Delivers balanced information with multiple contributors from both academia and industry Provides case histories involving geological analysis, geomechanical analysis, reservoir modeling, hydraulic fracturing treatment, microseismic monitoring, well performance and refracturing for development of unconventional reservoirs

Exploitation of Unconventional Oil and Gas Resources

Exploitation of Unconventional Oil and Gas Resources PDF Author: Kenneth Imo-Imo Israel Eshiet
Publisher:
ISBN: 1838811079
Category : Chemistry, Technical
Languages : en
Pages : 152

Book Description
The stimulation of unconventional hydrocarbon reservoirs is proven to improve their productivity to an extent that has rendered them economically viable. Generally, the stimulation design is a complex process dependent on intertwining factors such as the history of the formation, rock and reservoir fluid type, lithology and structural layout of the formation, cost, time, etc. A holistic grasp of these can be daunting, especially for people without sufficient experience and/or expertise in the exploitation of unconventional hydrocarbon reserves. This book presents the key facets integral to producing unconventional resources, and how the different components, if pieced together, can be used to create an integrated stimulation design. Areas covered are as follows: • stimulation methods, • fracturing fluids, • mixing and behavior of reservoir fluids, • assessment of reservoir performance, • integration of surface drilling data, • estimation of geomechanical properties and hydrocarbon saturation, and • health and safety. Exploitation of Unconventional Oil and Gas Resources: Hydraulic Fracturing and Other Recovery and Assessment Techniques is an excellent introduction to the subject area of unconventional oil and gas reservoirs, but it also complements existing information in the same discipline. It is an essential text for higher education students and professionals in academia, research, and the industry.

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495

Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.