Optimal Control of Random Sequences in Problems with Constraints PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimal Control of Random Sequences in Problems with Constraints PDF full book. Access full book title Optimal Control of Random Sequences in Problems with Constraints by A.B. Piunovskiy. Download full books in PDF and EPUB format.

Optimal Control of Random Sequences in Problems with Constraints

Optimal Control of Random Sequences in Problems with Constraints PDF Author: A.B. Piunovskiy
Publisher: Springer Science & Business Media
ISBN: 9401155089
Category : Mathematics
Languages : en
Pages : 355

Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.

Optimal Control of Random Sequences in Problems with Constraints

Optimal Control of Random Sequences in Problems with Constraints PDF Author: A.B. Piunovskiy
Publisher: Springer Science & Business Media
ISBN: 9401155089
Category : Mathematics
Languages : en
Pages : 355

Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.

Optimal Control of Random Sequences in Problems with Constraints

Optimal Control of Random Sequences in Problems with Constraints PDF Author: A.B. Piunovskiy
Publisher: Springer
ISBN: 9789401155090
Category : Mathematics
Languages : en
Pages : 348

Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.

Constrained Markov Decision Processes

Constrained Markov Decision Processes PDF Author: Eitan Altman
Publisher: CRC Press
ISBN: 9780849303821
Category : Mathematics
Languages : en
Pages : 260

Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.

Optimal Design of Control Systems

Optimal Design of Control Systems PDF Author: Gennadii E. Kolosov
Publisher: CRC Press
ISBN: 1000146758
Category : Mathematics
Languages : en
Pages : 423

Book Description
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."

Optimal Control Theory with Applications in Economics

Optimal Control Theory with Applications in Economics PDF Author: Thomas A. Weber
Publisher: MIT Press
ISBN: 0262015730
Category : Business & Economics
Languages : en
Pages : 387

Book Description
A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

Modern Optimization Methods for Decision Making Under Risk and Uncertainty

Modern Optimization Methods for Decision Making Under Risk and Uncertainty PDF Author: Alexei A. Gaivoronski
Publisher: CRC Press
ISBN: 1000983927
Category : Computers
Languages : en
Pages : 388

Book Description
The book comprises original articles on topical issues of risk theory, rational decision making, statistical decisions, and control of stochastic systems. The articles are the outcome of a series international projects involving the leading scholars in the field of modern stochastic optimization and decision making. The structure of stochastic optimization solvers is described. The solvers in general implement stochastic quasi-gradient methods for optimization and identification of complex nonlinear models. These models constitute an important methodology for finding optimal decisions under risk and uncertainty. While a large part of current approaches towards optimization under uncertainty stems from linear programming (LP) and often results in large LPs of special structure, stochastic quasi-gradient methods confront nonlinearities directly without need of linearization. This makes them an appropriate tool for solving complex nonlinear problems, concurrent optimization and simulation models, and equilibrium situations of different types, for instance, Nash or Stackelberg equilibrium situations. The solver finds the equilibrium solution when the optimization model describes the system with several actors. The solver is parallelizable, performing several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, and of composite stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. Several complex examples with applications to water resources management, energy markets, pricing of services on social networks are provided. In the case of power system, regulator makes decision on the final expansion plan, considering the strategic behavior of regulated companies and coordinating the interests of different economic entities. Such a plan can be an equilibrium − a planned decision where a company cannot increase its expected gain unilaterally.

Markov Decision Processes with Applications to Finance

Markov Decision Processes with Applications to Finance PDF Author: Nicole Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3642183247
Category : Mathematics
Languages : en
Pages : 393

Book Description
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).

Applied Optimal Control

Applied Optimal Control PDF Author: A. E. Bryson
Publisher: CRC Press
ISBN: 9780891162285
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description
This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it “a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.”

Continuous-Time Markov Decision Processes

Continuous-Time Markov Decision Processes PDF Author: Alexey Piunovskiy
Publisher: Springer Nature
ISBN: 3030549879
Category : Mathematics
Languages : en
Pages : 605

Book Description
This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.

Examples in Markov Decision Processes

Examples in Markov Decision Processes PDF Author: A. B. Piunovskiy
Publisher: World Scientific
ISBN: 1848167938
Category : Mathematics
Languages : en
Pages : 308

Book Description
This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes. The book is self-contained and unified in presentation. The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.