Reinforcement Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Reinforcement Learning PDF full book. Access full book title Reinforcement Learning by Marco Wiering. Download full books in PDF and EPUB format.

Reinforcement Learning

Reinforcement Learning PDF Author: Marco Wiering
Publisher: Springer Science & Business Media
ISBN: 3642276458
Category : Technology & Engineering
Languages : en
Pages : 653

Book Description
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes PDF Author: Vikram Krishnamurthy
Publisher: Cambridge University Press
ISBN: 1316594785
Category : Technology & Engineering
Languages : en
Pages : 491

Book Description
Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?

Naval Research Logistics Quarterly

Naval Research Logistics Quarterly PDF Author:
Publisher:
ISBN:
Category : Logistics, Naval
Languages : en
Pages : 740

Book Description


Markov Decision Processes

Markov Decision Processes PDF Author: Martin L. Puterman
Publisher: John Wiley & Sons
ISBN: 1118625870
Category : Mathematics
Languages : en
Pages : 544

Book Description
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Reinforcement Learning

Reinforcement Learning PDF Author: Marco Wiering
Publisher: Springer Science & Business Media
ISBN: 3642276458
Category : Technology & Engineering
Languages : en
Pages : 653

Book Description
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Conditional Markov Processes and Their Application to the Theory of Optimal Control

Conditional Markov Processes and Their Application to the Theory of Optimal Control PDF Author: R. L. Stratonovich
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 376

Book Description


Modeling and Management of Resources under Uncertainty

Modeling and Management of Resources under Uncertainty PDF Author: Thomas L. Vincent
Publisher: Springer Science & Business Media
ISBN: 3642933653
Category : Mathematics
Languages : en
Pages : 329

Book Description
This vol ume contains the proceedings of the second U. S. -Austral ia workshop on Renewable Resource Management held at the East-West Center, Honolulu, Hawaii, December 9-12, 1985. The workshop was jointly sponsored by the National Science Foundation (USA) and the Department of Science and Technology (Austral ia) under the U. S. -Austral ia Cooperative Science Program. The objective of the workshop was to focus on problems associated with the management of renewable resource systems. A particular emphasis was given to methods for handling uncertain elements whieh are present in any real system. Toward this end, the partiei pants were chosen so that the collective expertise included mathematical modeling, dynamical control/game theory, ecology, and practical management of real systems. Each participant was invited to give an informal presentation in his field of expertise as related to the overall theme. The formal papers (contained in this vo 1 ume) were written after the workshop so that the authors coul d util ize the workshop experience in relating their own work to others. To further encourage this exchange, each paper contained in this volume was reviewed by two other participants who then wrote formal comments. These comments (with author's reply in some cases) are attached to the end of each paper.

The Koopman Operator in Systems and Control

The Koopman Operator in Systems and Control PDF Author: Alexandre Mauroy
Publisher: Springer Nature
ISBN: 3030357139
Category : Technology & Engineering
Languages : en
Pages : 568

Book Description
This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.

NASA Conference Publication

NASA Conference Publication PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 628

Book Description


Adaptive Control

Adaptive Control PDF Author: Karl J. Åström
Publisher: Courier Corporation
ISBN: 0486319148
Category : Technology & Engineering
Languages : en
Pages : 596

Book Description
Suitable for advanced undergraduates and graduate students, this overview introduces theoretical and practical aspects of adaptive control, with emphasis on deterministic and stochastic viewpoints. 1995 edition.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262029251
Category : Computers
Languages : en
Pages : 350

Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.