Controlled Diffusion Processes

Controlled Diffusion Processes PDF Author: N. V. Krylov
Publisher: Springer Science & Business Media
ISBN: 3540709142
Category : Science
Languages : en
Pages : 314

Book Description
Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems

Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems PDF Author: Xi-Ren Cao
Publisher: Springer Nature
ISBN: 3030418464
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
This monograph applies the relative optimization approach to time nonhomogeneous continuous-time and continuous-state dynamic systems. The approach is intuitively clear and does not require deep knowledge of the mathematics of partial differential equations. The topics covered have the following distinguishing features: long-run average with no under-selectivity, non-smooth value functions with no viscosity solutions, diffusion processes with degenerate points, multi-class optimization with state classification, and optimization with no dynamic programming. The book begins with an introduction to relative optimization, including a comparison with the traditional approach of dynamic programming. The text then studies the Markov process, focusing on infinite-horizon optimization problems, and moves on to discuss optimal control of diffusion processes with semi-smooth value functions and degenerate points, and optimization of multi-dimensional diffusion processes. The book concludes with a brief overview of performance derivative-based optimization. Among the more important novel considerations presented are: the extension of the Hamilton–Jacobi–Bellman optimality condition from smooth to semi-smooth value functions by derivation of explicit optimality conditions at semi-smooth points and application of this result to degenerate and reflected processes; proof of semi-smoothness of the value function at degenerate points; attention to the under-selectivity issue for the long-run average and bias optimality; discussion of state classification for time nonhomogeneous continuous processes and multi-class optimization; and development of the multi-dimensional Tanaka formula for semi-smooth functions and application of this formula to stochastic control of multi-dimensional systems with degenerate points. The book will be of interest to researchers and students in the field of stochastic control and performance optimization alike.

Optimal Control of Diffusion Processes

Optimal Control of Diffusion Processes PDF Author: Vivek S. Borkar
Publisher: Longman
ISBN:
Category : Control theory
Languages : en
Pages : 212

Book Description


Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions PDF Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 0387310711
Category : Mathematics
Languages : en
Pages : 436

Book Description
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control PDF Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 1461263808
Category : Mathematics
Languages : en
Pages : 231

Book Description
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.

Ergodic Control of Diffusion Processes

Ergodic Control of Diffusion Processes PDF Author: Ari Arapostathis
Publisher: Cambridge University Press
ISBN: 0521768403
Category : Mathematics
Languages : en
Pages : 341

Book Description
The first comprehensive account of controlled diffusions with a focus on ergodic or 'long run average' control.

Controlled Diffusion Processes

Controlled Diffusion Processes PDF Author: N.V. Krylov
Publisher: Springer
ISBN: 9780387904610
Category : Mathematics
Languages : en
Pages : 0

Book Description
Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in W onham [76J). At the same time, Girsanov [25J and Howard [26J made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4J. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8J, Mine and Osaki [55J, and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Optimal Control of Nonlinear Processes

Optimal Control of Nonlinear Processes PDF Author: Dieter Grass
Publisher: Springer Science & Business Media
ISBN: 3540776478
Category : Business & Economics
Languages : en
Pages : 552

Book Description
Dynamic optimization is rocket science – and more. This volume teaches researchers and students alike to harness the modern theory of dynamic optimization to solve practical problems. These problems not only cover those in space flight, but also in emerging social applications such as the control of drugs, corruption, and terror. This volume is designed to be a lively introduction to the mathematics and a bridge to these hot topics in the economics of crime for current scholars. The authors celebrate Pontryagin’s Maximum Principle – that crowning intellectual achievement of human understanding. The rich theory explored here is complemented by numerical methods available through a companion web site.

Stochastic Controls

Stochastic Controls PDF Author: Jiongmin Yong
Publisher: Springer Science & Business Media
ISBN: 1461214661
Category : Mathematics
Languages : en
Pages : 459

Book Description
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension PDF Author: Giorgio Fabbri
Publisher: Springer
ISBN: 3319530674
Category : Mathematics
Languages : en
Pages : 916

Book Description
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.