Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF full book. Access full book title Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles by Draguna L. Vrabie. Download full books in PDF and EPUB format.

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305

Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305

Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.

Online Learning Algorithms for Differential Dynamic Games and Optimal Control

Online Learning Algorithms for Differential Dynamic Games and Optimal Control PDF Author: Kyriakos G. Vamvoudakis
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages :

Book Description
Optimal control deals with the problem of finding a control law for a given system that a certain optimality criterion is achieved. It can be derived using Pontryagin's maximum principle (a necessary condition), or by solving the Hamilton-Jacobi-Bellman equation (a sufficient condition). Major drawback of optimal control is that it is offline. Adaptive control involves modifying the control law used by a controller to cope with the facts that the system is unknown or uncertain. Adaptive controllers are not optimal. Adaptive optimal controllers have been proposed by adding optimality criteria to an adaptive controller, or adding adaptive characteristics to an optimal controller. In this work, online adaptive learning algorithms are developed for optimal control and differential dynamic games by using measurements along the trajectory or input/output data. These algorithms are based on actor/critic schemes and involve simultaneous tuning of the actor/critic neural networks and provide online solutions to complex Hamilton-Jacobi equations, along with convergence and Lyapunov stability proofs. The research begins with the development of an online algorithm based on policy iteration for learning the continuous-time (CT) optimal control solution with infinite horizon cost for nonlinear systems with known dynamics. That is, the algorithm learns online in real-time the solution to the optimal control design Hamilton-Jacobi (HJ) equation. This is called 'synchronous' policy iteration. Then it became interesting to develop an online learning algorithm to solve the continuous-time two-player zero-sum game with infinite horizon cost for nonlinear systems. The algorithm learns online in real-time the solution to the game design Hamilton-Jacobi-Isaacs equation. This algorithm is called online gaming algorithm 'synchronous' zero-sum game policy iteration. One of the major outcomes of this work is the online learning algorithm to solve the continuous time multi player non-zero sum games with infinite horizon for linear and nonlinear systems. The adaptive algorithm learns online the solution of coupled Riccati and coupled Hamilton-Jacobi equations for linear and nonlinear systems respectively. The optimal-adaptive algorithm is implemented as a separate actor/critic parametric network approximator structure for every player, and involves simultaneous continuous-time adaptation of the actor/critic networks. The next result shows how to implement Approximate Dynamic Programming methods using only measured input/output data from the systems. Policy and value iteration algorithms have been developed that converge to an optimal controller that requires only output feedback. The notion of graphical games is developed for dynamical systems, where the dynamics and performance indices for each node depend only on local neighbor information. A cooperative policy iteration algorithm, is given for graphical games, that converges to the best response when the neighbors of each agent do not update their policies and to the cooperative Nash equilibrium when all agents update their policies simultaneously. Finally, a synchronous policy iteration algorithm based on integral reinforcement learning is given. This algorithm does not need the drift dynamics.

Reinforcement Learning for Optimal Feedback Control

Reinforcement Learning for Optimal Feedback Control PDF Author: Rushikesh Kamalapurkar
Publisher: Springer
ISBN: 331978384X
Category : Technology & Engineering
Languages : en
Pages : 305

Book Description
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

Intelligent Optimal Adaptive Control for Mechatronic Systems

Intelligent Optimal Adaptive Control for Mechatronic Systems PDF Author: Marcin Szuster
Publisher: Springer
ISBN: 331968826X
Category : Technology & Engineering
Languages : en
Pages : 387

Book Description
The book deals with intelligent control of mobile robots, presenting the state-of-the-art in the field, and introducing new control algorithms developed and tested by the authors. It also discusses the use of artificial intelligent methods like neural networks and neuraldynamic programming, including globalised dual-heuristic dynamic programming, for controlling wheeled robots and robotic manipulators,and compares them to classical control methods.

Advanced Optimal Control and Applications Involving Critic Intelligence

Advanced Optimal Control and Applications Involving Critic Intelligence PDF Author: Ding Wang
Publisher: Springer Nature
ISBN: 9811972915
Category : Technology & Engineering
Languages : en
Pages : 283

Book Description
This book intends to report new optimal control results with critic intelligence for complex discrete-time systems, which covers the novel control theory, advanced control methods, and typical applications for wastewater treatment systems. Therein, combining with artificial intelligence techniques, such as neural networks and reinforcement learning, the novel intelligent critic control theory as well as a series of advanced optimal regulation and trajectory tracking strategies are established for discrete-time nonlinear systems, followed by application verifications to complex wastewater treatment processes. Consequently, developing such kind of critic intelligence approaches is of great significance for nonlinear optimization and wastewater recycling. The book is likely to be of interest to researchers and practitioners as well as graduate students in automation, computer science, and process industry who wish to learn core principles, methods, algorithms, and applications in the field of intelligent optimal control. It is beneficial to promote the development of intelligent optimal control approaches and the construction of high-level intelligent systems.

Adaptive Dynamic Programming for Control

Adaptive Dynamic Programming for Control PDF Author: Huaguang Zhang
Publisher: Springer Science & Business Media
ISBN: 144714757X
Category : Technology & Engineering
Languages : en
Pages : 432

Book Description
There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; • nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: • establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; • demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and • shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.

Reinforcement Learning and Optimal Control

Reinforcement Learning and Optimal Control PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529396
Category : Computers
Languages : en
Pages : 388

Book Description
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.

Adaptive Dynamic Programming with Applications in Optimal Control

Adaptive Dynamic Programming with Applications in Optimal Control PDF Author: Derong Liu
Publisher: Springer
ISBN: 3319508156
Category : Technology & Engineering
Languages : en
Pages : 609

Book Description
This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

Reinforcement Learning, second edition

Reinforcement Learning, second edition PDF Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549

Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Learning-Based Adaptive Control

Learning-Based Adaptive Control PDF Author: Mouhacine Benosman
Publisher: Butterworth-Heinemann
ISBN: 0128031514
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. Includes a good number of Mechatronics Examples of the techniques. Compares and blends Model-free and Model-based learning algorithms. Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.