Optical Navigation for a Spacecraft in a Planetary System PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Navigation for a Spacecraft in a Planetary System PDF full book. Access full book title Optical Navigation for a Spacecraft in a Planetary System by John Allen Christian. Download full books in PDF and EPUB format.

Optical Navigation for a Spacecraft in a Planetary System

Optical Navigation for a Spacecraft in a Planetary System PDF Author: John Allen Christian
Publisher:
ISBN:
Category :
Languages : en
Pages : 738

Book Description
Recent years have seen ambitious robotic exploration missions to other planets and a renewed interest in sending humans beyond low Earth orbit. These activities give rise to a need for autonomous spacecraft operation. Of particular interest here is the ability of a spacecraft to navigate independent of contact with Earth-based resources. Optical navigation techniques are proposed as a solution to the problem of navigating in a planetary system without requiring navigation information from Earth. A detailed discussion of optical sensor hardware and error sources leads to new high fidelity math models for optical sensor performance that may be used in navigation simulations. Algorithms are developed that allow optical data to be used for the estimation of spacecraft position, velocity, and attitude. Sequential measurements are processed using traditional filtering techniques. Additionally, for the case of attitude estimation, a new attitude filter called Sequential Optimal Attitude Routine (SOAR) is presented. The models and techniques developed in this dissertation are demonstrated in two case studies: (1) navigation of a spacecraft performing a planetary fly-by using real images from the June 2007 MESSENGER fly-by of Venus and (2) navigation of a spacecraft in cislunar space on a return trajectory from the Moon.

Optical Navigation for a Spacecraft in a Planetary System

Optical Navigation for a Spacecraft in a Planetary System PDF Author: John Allen Christian
Publisher:
ISBN:
Category :
Languages : en
Pages : 738

Book Description
Recent years have seen ambitious robotic exploration missions to other planets and a renewed interest in sending humans beyond low Earth orbit. These activities give rise to a need for autonomous spacecraft operation. Of particular interest here is the ability of a spacecraft to navigate independent of contact with Earth-based resources. Optical navigation techniques are proposed as a solution to the problem of navigating in a planetary system without requiring navigation information from Earth. A detailed discussion of optical sensor hardware and error sources leads to new high fidelity math models for optical sensor performance that may be used in navigation simulations. Algorithms are developed that allow optical data to be used for the estimation of spacecraft position, velocity, and attitude. Sequential measurements are processed using traditional filtering techniques. Additionally, for the case of attitude estimation, a new attitude filter called Sequential Optimal Attitude Routine (SOAR) is presented. The models and techniques developed in this dissertation are demonstrated in two case studies: (1) navigation of a spacecraft performing a planetary fly-by using real images from the June 2007 MESSENGER fly-by of Venus and (2) navigation of a spacecraft in cislunar space on a return trajectory from the Moon.

Planetary Spacecraft Navigation

Planetary Spacecraft Navigation PDF Author: James Miller
Publisher: Springer
ISBN: 3319789163
Category : Technology & Engineering
Languages : en
Pages : 390

Book Description
This textbook introduces the theories and practical procedures used in planetary spacecraft navigation. Written by a former member of NASA's Jet Propulsion Laboratory (JPL) navigation team, it delves into the mathematics behind modern digital navigation programs, as well as the numerous technological resources used by JPL as a key player in the field. In addition, the text offers an analysis of navigation theory application in recent missions, with the goal of showing students the relationship between navigation theory and the real-world orchestration of mission operations.

The Navigators

The Navigators PDF Author: Andrew J. Butrica
Publisher: CreateSpace
ISBN: 9781492777830
Category : Science
Languages : en
Pages : 380

Book Description
This is the story behind NASA's successful exploration of the solar system. For a half century, NASA has sent one probe after another into space, achieving scientific and technological successes along the way and adding to humanity's knowledge of the solar system. NASA has reaped these great rewards thanks to a small investment in deep-space navigation. With rare exceptions, navigation's great achievements—and scientific accomplishments—have gone unobserved. The failures of the Mars Climate Orbiter and Mars Polar Lander shed navigation (wrongly) in a negative light. Yet, the indispensable role of navigators behind NASA's many successes over the past half century has not come to light—until now. The institutional home of deep-space navigation is the NASA's Jet Propulsion Laboratory. JPL navigation originated long before it became part of NASA, when the lab developed and tested missiles for the nation's military space effort. From the start, deep-space navigation was an endeavor built on science and mathematics and dependent on the Deep Space Network for tracking spacecraft and on digital computers and software for processing data. Navigation is multidisciplinary. It involves astronomy and radio astronomy, geodesy and geophysics, cartography and meteorology, ionospheric physics and radio science. Navigators interact with a panoply of institutions, whether the Bureau International de l'Heure, the International Polar Motion Service, the International Union of Geodesy and Geophysics, and the International Astronomical Union. JPL navigation started as a consumer of Naval Observatory data, practices, and ephemerides, but in the 1970s became the source of ephemerides, constants, models, and ephemerides for the world's almanac offices. Navigators have been project scientists on many NASA missions, performing experiments in celestial mechanics and gravitational fields, undertaking radio occultations, and testing Einstein's General Theory of Relativity. They also have made a number of memorable scientific discoveries: mascons on the Moon and Mars, volcanism on Io, and over a dozen satellites of the outer planets. The nature of deep-space navigation began to change with the introduction of optical navigation, which uses a probes science camera and telemetry to determine its position relative to a planet, moon, or asteroid. Deep-space navigation began—and remains—an activity carried out entirely on Earth. Radio signals from the Deep Space Network constituted the only information processed. Optical navigation began to move some of the process—and equipment—to spacecraft. At first, image processing was a labor-intensive and computer-intensive effort. Software improvements and advances in spacecraft computers paved the way for autonomous navigation, which transferred many basic navigation processes to the onboard computer: estimating trajectories, planning and executing imaging, and analyzing pictures. The most recent evolutionary stage has been the merger of this autonomous software with spacecraft guidance and control functions.

Analytic Approximations for Application to Spacecraft Optical Navigation on Short Data Arcs

Analytic Approximations for Application to Spacecraft Optical Navigation on Short Data Arcs PDF Author: Alton P. Mayo
Publisher:
ISBN:
Category : Least squares
Languages : en
Pages : 34

Book Description


Spacecraft Navigation and Guidance

Spacecraft Navigation and Guidance PDF Author: Maxwell Noton
Publisher: Springer Science & Business Media
ISBN: 144711583X
Category : Technology & Engineering
Languages : en
Pages : 193

Book Description
The analysis and computational techniques associated with the navigation and guidance of spacecraft are now in a mature state of development. However the documentation has remained dispersed throughout conference papers, journals, company and contract rep orts, making it difficult to get a true, comprehensive picture of the subject. This text brings together the body of literature with suitable attention to the necessary underlying mathematics and computational techniques. It covers in detail the necessary orbital mechanics, orbit determination with emphasis on the SRIF algorithm, gr avity assist manoeuvres and guidance, both ground-based and autonomous. Attention is paid to all phases of a space mission including launch and re-entry, and whether culminating in an earth satellite or a deep space mission to planets or primitive bodies. Software associated with the text is available free to the reader by means of the Internet server of the publisher. 'Spacecraft Navigation and Guidance' is an invaluable aid for all those working within astronautics, aeronautics, and control engineering in general.

Space Navigation Handbook

Space Navigation Handbook PDF Author: United States Naval Academy
Publisher:
ISBN:
Category : Navigation (Astronautics)
Languages : en
Pages : 140

Book Description


Imaging Our Solar System: The Evolution of Space Mission Cameras and Instruments

Imaging Our Solar System: The Evolution of Space Mission Cameras and Instruments PDF Author: Bernard Henin
Publisher: Springer Nature
ISBN: 3030904997
Category : Science
Languages : en
Pages : 294

Book Description
As we speak, stunning new snapshots of our Solar System are being transmitted to Earth by a fleet of space probes, landers, and rovers. Yet nowadays, it is all too easy to take such images for granted amidst the deluge of competing visuals we scroll through every day. To truly understand the value of these incredible space photos, we first need to understand the tools that made them possible. This is the story of imaging instruments in space, detailing all the technological missteps and marvels that have allowed us to view planetary bodies like never before. From the rudimentary cameras launched in the 1950’s to the cutting-edge imaging instruments onboard the Mars Perseverance rover, this book covers more than 100 imaging systems sent aboard various spacecraft to explore near and distant planetary bodies. Featured within are some of the most striking images ever received by these pioneering instruments, including Voyager’s Pale Blue Dot, Apollo’s Blue Marble, Venera’s images from the surface of Venus, Huygens’ images of Titan, New Horizon’s images of Pluto and Arrokoth, and much more. Along the way, you will learn about advancements in data transmission, digitization, citizen science, and other fields that revolutionized space imaging, helping us peer farther and more clearly across the Solar System.

Sequential Estimation Methods for Small Body Optical Navigation

Sequential Estimation Methods for Small Body Optical Navigation PDF Author: Corwin Olson
Publisher:
ISBN:
Category :
Languages : en
Pages : 478

Book Description
As humans explore further into the solar system, small bodies such as asteroids and comets serve as critical stepping-stone destinations. Highly accurate navigation about these small bodies is critical for any future missions, and as a result is listed prominently among NASA's future goals in the NASA Office of Chief Technologist Roadmap. Due to the long communication light-time delays with the Earth, advances in small body navigation may enable missions currently not feasible, as well as significantly reduce dependence on ground resources. Increased operational agility will enable rapid decisions and opportunistic science measurements not possible in previous missions to small bodies. To assist NASA in accomplishing future small body navigation goals, several important advances are made. First, the effectiveness of modern orbit estimation techniques is investigated, with the higher order Additive Divided-Difference sigma point Filter (ADF) implemented and used along with the standard Extended Kalman Filter (EKF) to estimate the spacecraft state from optical small body surface landmark measurements. The ADF performs consistently better than the EKF in the simulations performed, with increasing improvement for higher levels of initial state error and longer intervals between photos of the surface. Second, a new method is created to improve onboard navigation filter performance in diverse and rapidly changing dynamical environments. The approach is to precompute a process noise profile along a reference trajectory using consider covariance analysis tools and filters. When used in an onboard navigation filter, the precomputed process noise allows the filter to account for time- and state-dependent perturbations in the dynamics. The new method also obviates the need for most or all traditional manual tuning of the filter, and provides significantly improved representation of the state uncertainty. Finally, a Simultaneous Localization And Mapping (SLAM) algorithm is employed to estimate the spin state of a tumbling small body (which are expected to be a significant percentage of the small bodies in the solar system), as well as the spacecraft state and surface landmark locations. For the small body characterization phase of the Rosetta mission, the state estimates converge successfully for large initial state errors. The SLAM algorithm remains effective for a range of small body spin states and masses that correspond to expected tumbling small bodies throughout the solar system. The SLAM algorithm is successfully applied to high fidelity independently simulated imagery of a tumbling small body generated by the European Space Agency, and a method for initializing the small body landmark locations is provided.

Radiometric Tracking Techniques for Deep-Space Navigation

Radiometric Tracking Techniques for Deep-Space Navigation PDF Author: Catherine L. Thornton
Publisher: John Wiley & Sons
ISBN: 0471726168
Category : Technology & Engineering
Languages : en
Pages : 99

Book Description
Radiometric Tracking Techniques for Deep-Space Navigation focuses on a broad array of technologies and concepts developed over the last four decades to support radio navigation on interplanetary spacecraft. In addition to an overview of Earth-based radio navigation techniques, the book includes a simplified conceptual presentation of each radiometric measurement type, its information content, and the expected measeurement accuracy. The methods described for both aquiring and calibrating radiometric measurements also provide a robust system to support guidance and navigation for future robotic space exploration.

Deep Space Craft

Deep Space Craft PDF Author: Dave Doody
Publisher: Springer Science & Business Media
ISBN: 3540895108
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
Deep Space Craft opens the door to interplanetary flight. It looks at this world from the vantage point of real operations on a specific mission, and follows a natural trail from the day-to-day working of this particular spacecraft, through the functioning of all spacecraft to the collaboration of the various disciplines to produce the results for which a spacecraft is designed. These results are of course mostly of a scientific nature, although a small number of interplanetary missions are also flown primarily to test and prove new engineering techniques. The author shows how, in order to make sense of all the scientific data coming back to Earth, the need for experiments and instrumentation arises, and follows the design and construction of the instruments through to their placement and testing on a spacecraft prior to launch. Examples are given of the interaction between an instrument’s science team and the mission’s flight team to plan and specify observations, gather and analyze data in flight, and finally present the results and discoveries to the scientific community. This highly focused, insider’s guide to interplanetary space exploration uses many examples of previous and current endeavors. It will enable the reader to research almost any topic related to spacecraft and to seek the latest scientific findings, the newest emerging technologies, or the current status of a favorite flight. In order to provide easy paths from the general to the specific, the text constantly refers to the Appendices. Within the main text, the intent is general familiarization and categorization of spacecraft and instruments at a high level, to provide a mental framework to place in context and understand any spacecraft and any instrument encountered in the reader’s experience. Appendix A gives illustrated descriptions of many interplanetary spacecraft, some earth-orbiters and ground facilities to reinforce the classification framework. Appendix B contains illustrated detailed descriptions of a dozen scientific instruments, including some ground-breaking engineering appliances that have either already been in operation or are poised for flight. Each instrument’s range of sensitivity in wavelengths of light, etc, and its physical principle(s) of operation is described. Appendix C has a few annotated illustrations to clarify the nomenclature of regions and structures in the solar system and the planets’ ring systems, and places the solar system in context with the local interstellar environment.