Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle PDF full book. Access full book title Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle by Christopher Nunes. Download full books in PDF and EPUB format.

Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle

Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle PDF Author: Christopher Nunes
Publisher:
ISBN:
Category : Biometric identification
Languages : en
Pages : 124

Book Description
Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions.

Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle

Optical 2D Positional Estimation for a Biomimetic Station-keeping Autonomous Underwater Vehicle PDF Author: Christopher Nunes
Publisher:
ISBN:
Category : Biometric identification
Languages : en
Pages : 124

Book Description
Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions.

Design of a Dynamic Positioning Controller Using Stereo Vision for a Biomimetic Autonomous Underwater Vehicle in Water Current

Design of a Dynamic Positioning Controller Using Stereo Vision for a Biomimetic Autonomous Underwater Vehicle in Water Current PDF Author: 梁慧瑩
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Navigation of a Biomimetic Autonomous Underwater Vehicle by Using Monocular Vision in a Known Environment

Navigation of a Biomimetic Autonomous Underwater Vehicle by Using Monocular Vision in a Known Environment PDF Author: 吳柏葳
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles

Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles PDF Author: Francesco Fanelli
Publisher: Springer
ISBN: 9783030155957
Category : Technology & Engineering
Languages : en
Pages : 97

Book Description
This book focuses on pose estimation algorithms for Autonomous Underwater Vehicles (AUVs). After introducing readers to the state of the art, it describes a joint endeavor involving attitude and position estimation, and details the development of a nonlinear attitude observer that employs inertial and magnetic field data and is suitable for underwater use. In turn, it shows how the estimated attitude constitutes an essential type of input for UKF-based position estimators that combine position, depth, and velocity measurements. The book discusses the possibility of including real-time estimates of sea currents in the developed estimators, and highlights simulations that combine real-world navigation data and experimental test campaigns to evaluate the performance of the resulting solutions. In addition to proposing novel algorithms for estimating the attitudes and positions of AUVs using low-cost sensors and taking into account magnetic disturbances and ocean currents, the book provides readers with extensive information and a source of inspiration for the further development and testing of navigation algorithms for AUVs.

State Estimation of a Biomimetic Underwater Vehicle Using a Piezoelectric Sensor Array

State Estimation of a Biomimetic Underwater Vehicle Using a Piezoelectric Sensor Array PDF Author: 劉昊[xuan].
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Optical Proximity Sensor and Orientation Control of Autonomous, Underwater Robot

Optical Proximity Sensor and Orientation Control of Autonomous, Underwater Robot PDF Author: Martin Lozano (Jr.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Book Description
Autonomous mobile robots need a reliable means of navigation to reach their target while avoiding collisions. This requires continuous knowledge of the vehicle's position, orientation, and motion as well as a way to identify their surroundings. Exploratory robots and those traveling in complex environments may have difficulty determining their global location. They often rely on data from sensors to estimate their position. While various proximity sensors have been developed for land vehicles, options for underwater vehicles are limited. We detail the design of an optical orientation sensor for fine positioning of highly maneuverable underwater robots. The sensor consists of a camera-laser system (CLS) to geometrically estimate distances to points on a surface. By aggregating and analyzing several data points from multiple lasers, an estimate of the robot's distance, yaw, and pitch are determined. A prototype sensor is constructed and shown to achieve highly accurate distance estimates ( 1mm) at close ranges within 270mm and yaw rotation estimates of 2* within the range of 30*. We also show the successful integration of a gyro with the CLS on an autonomous surface vehicle. The fused estimate of the two sensors results in improved dynamic performance than either sensor alone. The optical sensor corrects the unbounded position error of the gyro measurements with the added benefit of external feedback to avoid collisions in dynamic environments. The gyro provides high frequency orientation estimation in between optical measurements, greatly reduces transient behavior, and generally smoothens vehicle motion. Using this sensor, an underwater robot exploring a complex environment can estimate its orientation relative to a surface in real-time, allowing the robot to avoid collisions with the sensitive environment or maintain a desired orientation while autonomously tracking objects of interest.

Advances in Unmanned Marine Vehicles

Advances in Unmanned Marine Vehicles PDF Author: G.N. Roberts
Publisher: IET
ISBN: 0863414508
Category : Technology & Engineering
Languages : en
Pages : 461

Book Description
Unmanned marine vehicles (UMVs) include autonomous underwater vehicles, remotely operated vehicles, semi-submersibles and unmanned surface craft. Considerable importance is being placed on the design and development of such vehicles, as they provide cost-effective solutions to a number of littoral, coastal and offshore problems. This book highlights the advanced technology that is evolving to meet the challenges being posed in this exciting and growing area of research.

The Robotics Primer

The Robotics Primer PDF Author: Maja J. Mataric
Publisher: MIT Press
ISBN: 026263354X
Category : Computers
Languages : en
Pages : 325

Book Description
A broadly accessible introduction to robotics that spans the most basic concepts and the most novel applications; for students, teachers, and hobbyists. The Robotics Primer offers a broadly accessible introduction to robotics for students at pre-university and university levels, robot hobbyists, and anyone interested in this burgeoning field. The text takes the reader from the most basic concepts (including perception and movement) to the most novel and sophisticated applications and topics (humanoids, shape-shifting robots, space robotics), with an emphasis on what it takes to create autonomous intelligent robot behavior. The core concepts of robotics are carried through from fundamental definitions to more complex explanations, all presented in an engaging, conversational style that will appeal to readers of different backgrounds. The Robotics Primer covers such topics as the definition of robotics, the history of robotics (“Where do Robots Come From?”), robot components, locomotion, manipulation, sensors, control, control architectures, representation, behavior (“Making Your Robot Behave”), navigation, group robotics, learning, and the future of robotics (and its ethical implications). To encourage further engagement, experimentation, and course and lesson design, The Robotics Primer is accompanied by a free robot programming exercise workbook that implements many of the ideas on the book on iRobot platforms. The Robotics Primer is unique as a principled, pedagogical treatment of the topic that is accessible to a broad audience; the only prerequisites are curiosity and attention. It can be used effectively in an educational setting or more informally for self-instruction. The Robotics Primer is a springboard for readers of all backgrounds—including students taking robotics as an elective outside the major, graduate students preparing to specialize in robotics, and K-12 teachers who bring robotics into their classrooms.

Introduction to Autonomous Mobile Robots, second edition

Introduction to Autonomous Mobile Robots, second edition PDF Author: Roland Siegwart
Publisher: MIT Press
ISBN: 0262295091
Category : Computers
Languages : en
Pages : 473

Book Description
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.

Biologically Inspired Robotics

Biologically Inspired Robotics PDF Author: Yunhui Liu
Publisher: CRC Press
ISBN: 1439854882
Category : Medical
Languages : en
Pages : 343

Book Description
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.