Author: Martin Schechter
Publisher: Courier Corporation
ISBN: 0486425479
Category : Science
Languages : en
Pages : 350
Book Description
Starting with a simple quantum theory postulate, this text introduces mathematical techniques that help answer questions important to physical theory. The entire book is devoted to study of a particle moving in a straight line; students develop mathematical techniques by answering questions about the particle. 1981 edition.
Operator Methods in Quantum Mechanics
Author: Martin Schechter
Publisher: Courier Corporation
ISBN: 0486425479
Category : Science
Languages : en
Pages : 350
Book Description
Starting with a simple quantum theory postulate, this text introduces mathematical techniques that help answer questions important to physical theory. The entire book is devoted to study of a particle moving in a straight line; students develop mathematical techniques by answering questions about the particle. 1981 edition.
Publisher: Courier Corporation
ISBN: 0486425479
Category : Science
Languages : en
Pages : 350
Book Description
Starting with a simple quantum theory postulate, this text introduces mathematical techniques that help answer questions important to physical theory. The entire book is devoted to study of a particle moving in a straight line; students develop mathematical techniques by answering questions about the particle. 1981 edition.
Mathematical Methods in Physics
Author: Philippe Blanchard
Publisher: Springer Science & Business Media
ISBN: 1461200490
Category : Mathematics
Languages : en
Pages : 469
Book Description
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.
Publisher: Springer Science & Business Media
ISBN: 1461200490
Category : Mathematics
Languages : en
Pages : 469
Book Description
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Operators, Geometry and Quanta
Author: Dmitri Fursaev
Publisher: Springer Science & Business Media
ISBN: 9400702051
Category : Science
Languages : en
Pages : 294
Book Description
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
Publisher: Springer Science & Business Media
ISBN: 9400702051
Category : Science
Languages : en
Pages : 294
Book Description
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Operator Methods in Mathematical Physics
Author: Jan Janas
Publisher: Springer Science & Business Media
ISBN: 3034805314
Category : Mathematics
Languages : en
Pages : 184
Book Description
The conference Operator Theory, Analysis and Mathematical Physics – OTAMP is a regular biennial event devoted to mathematical problems on the border between analysis and mathematical physics. The current volume presents articles written by participants, mostly invited speakers, and is devoted to problems at the forefront of modern mathematical physics such as spectral properties of CMV matrices and inverse problems for the non-classical Schrödinger equation. Other contributions deal with equations from mathematical physics and study their properties using methods of spectral analysis. The volume explores several new directions of research and may serve as a source of new ideas and problems for all scientists interested in modern mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 3034805314
Category : Mathematics
Languages : en
Pages : 184
Book Description
The conference Operator Theory, Analysis and Mathematical Physics – OTAMP is a regular biennial event devoted to mathematical problems on the border between analysis and mathematical physics. The current volume presents articles written by participants, mostly invited speakers, and is devoted to problems at the forefront of modern mathematical physics such as spectral properties of CMV matrices and inverse problems for the non-classical Schrödinger equation. Other contributions deal with equations from mathematical physics and study their properties using methods of spectral analysis. The volume explores several new directions of research and may serve as a source of new ideas and problems for all scientists interested in modern mathematical physics.
Geometrical Methods of Mathematical Physics
Author: Bernard F. Schutz
Publisher: Cambridge University Press
ISBN: 1107268141
Category : Science
Languages : en
Pages : 272
Book Description
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Publisher: Cambridge University Press
ISBN: 1107268141
Category : Science
Languages : en
Pages : 272
Book Description
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.
Asymptotic Methods in Equations of Mathematical Physics
Author: B Vainberg
Publisher: CRC Press
ISBN: 9782881246647
Category : Science
Languages : en
Pages : 516
Book Description
Typed English translation of a monograph first published (in Russian) in 1982. Provides graduate students and researchers with usefully detailed discussion of most of the asymptotic methods standard these days to the work of mathematical physicists. The author prefers not to dwell in the heights of abstraction; he has written a broadly intelligble book, which is informed at every point by his secure command of major physical applications. An expensive but valuable contribution to the literature of an important but too-little-written- about field. Twelve chapters, references. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: CRC Press
ISBN: 9782881246647
Category : Science
Languages : en
Pages : 516
Book Description
Typed English translation of a monograph first published (in Russian) in 1982. Provides graduate students and researchers with usefully detailed discussion of most of the asymptotic methods standard these days to the work of mathematical physicists. The author prefers not to dwell in the heights of abstraction; he has written a broadly intelligble book, which is informed at every point by his secure command of major physical applications. An expensive but valuable contribution to the literature of an important but too-little-written- about field. Twelve chapters, references. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Introduction to Mathematical Physics
Author: Chun Wa Wong
Publisher: OUP Oxford
ISBN: 0191648604
Category : Science
Languages : en
Pages : 731
Book Description
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Publisher: OUP Oxford
ISBN: 0191648604
Category : Science
Languages : en
Pages : 731
Book Description
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Methods of Modern Mathematical Physics: Functional analysis
Author: Michael Reed
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Category : Functional analysis
Languages : en
Pages : 417
Book Description
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.
Publisher: Gulf Professional Publishing
ISBN: 0125850506
Category : Functional analysis
Languages : en
Pages : 417
Book Description
"This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations." --Publisher description.